PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anaerobic digestion and composting as methods of bio-waste management

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie procesów beztlenowego i tlenowego zagospodarowania bioodpadów
Języki publikacji
EN
Abstrakty
EN
The management of biodegradable waste from various sectors of economy is an essential element in terms of environmental protection. The paper discusses issues related to the possibility of bio-waste treatment using anaerobic digestion technologies and composting processes, highlighting the conditions for the processes and their advantages and disadvantages. The challenges of overproduction of bio-waste faced by highly developed countries around the world are also presented. Research showed that the anaerobic digestion of this waste combines both biofuel production and a circular economy. The popularity of this method is linked, among others to a low cost of raw materials and wide range of possible uses for biogas (i.e. electricity, heat, or biomethane). In addition, an alternative bio-waste management option, compost production, was discussed. The study aimed to compare anaerobic and aerobic bio-waste management processes.
PL
Zagospodarowanie odpadów biodegradowalnych pochodzących z różnych gałęzi gospodarki jest niezbędnym elementem w aspekcie ochrony środowiska. W artykule omówione zostały zagadnienia związane z możliwością przetwarzania bioodpadów wykorzystując technologie fermentacji metanowej i procesu kompostowania, z podkreśleniem warunków prowadzenia procesów oraz ich wad i zalet. Przedstawione zostały także wyzwania związane z nadmierną produkcją bioodpadów, przed którymi stoją państwa wysokorozwinięte na całym świecie. Prowadzone badania pokazują, że fermentacja beztlenowa omawianych odpadów łączy zarówno produkcję biopaliw oraz gospodarkę obiegu zamkniętego. Popularność omawianej metody jest związana m.in. z niskim kosztem surowców oraz szeroką możliwością wykorzystania produktu jakim jest biogaz (tj. elektryczność, ciepło lub biometan). Ponadto omówiona została tematyka związana z alternatywną możliwością zagospodarowania bioodpadów jaką jest produkcja kompostu. Celem pracy było porównanie procesów beztlenowego i tlenowego zagospodarowania bioodpadów.
Rocznik
Strony
173--186
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
  • Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
  • Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland
Bibliografia
  • Abdelsalam, E. M., Samer, M., Amer, M. A., & Amer, B. M. (2021). Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environment, Development and Sustainability, 23(6), 8746-8757. https://doi.org/10.1007/s10668-020-00991-9.
  • Ajmal, M., Shi, A., Awais, M., Mengqi, Z., Zihao, X., Shabbir, A., Faheem, M., Wei, W., & Ye, L. (2021). Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. Journal of Environmental Chemical Engineering, 9(4), 105453. https://doi.org/10.1016/j.jece.2021.105453.
  • Alessi, A., Lopes, A. D. C. P., Müller, W., Gerke, F., Robra, S., & Bockreis, A. (2020). Mechanical separation of impurities in biowaste: Comparison of four different pretreatment systems. Waste Management, 106, 12-20. https://doi.org/10.1016/j.wasman.2020.03.006.
  • Awais, M., Li, W., Munir, A., Omar, M. M., & Ajmal, M. (2021). Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Conversion and Biorefinery, 11, 429-444. https://doi.org/10.1007/s13399-020-00690-5.
  • Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/ su12114456.
  • Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic agriculture, 8, 141-158. 10.1007/s13165-017-0180-z.
  • Balanda, O., Serafinowska, D., Marchenko, O., Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering, 26(1) 133-144. https://doi.org/10.2478/agriceng-2022-0011.
  • Baron, V., Saoud, M., Jupesta, J., Praptantyo, I. R., Admojo, H. T., Bessou, C., & Caliman, J. P. (2019). Critical parameters in the life cycle inventory of palm oil mill residues composting. Indonesian Journal of Life Cycle Assessment and Sustainability, 3(1), https://doi.org/10.52394/ijolcas.v3i1.72.
  • Barrón-Santos, F. J., Gutiérrez-Castillo, M. E., Tovar-Gálvez, L. R., Teresa, M., Núñez-Cardona, R. E. N., Tapia, C. R., & Espitia-Cabrera, A. (2021). Improving Compost Process Efficiency by Leachates Inoculation and Shredding of the Organic Fraction of Municipal Solid Waste at Bordo Poniente Composting Plant, Mexico City. Journal of Environmental Science and Engineering, 10, 177-183. 10.17265/2162-5298/2021.05.003.
  • Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9.
  • Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production- A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and sustainable Energy reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093.
  • Bojarski, W., Czekała, W., Nowak, M., & Dach, J. (2023). Production of compost from logging residues. Bioresource Technology, 376, 128878. https://doi.org/10.1016/j.biortech.2023.128878.
  • Borek, K., & Romaniuk, W. (2020a). Biogas installations for harvesting energy and utilization of natural fertilisers. Agricultural Engineering, 24(1), 1-14. https://doi.org/10.1515/agriceng-2020-0001.
  • Borek, K., & Romaniuk, W. (2020b). Possibilities of obtaining renewable energy in dairy farming. Agricultural Engineering, 24(2), 9-20. https://doi.org/10.1515/agriceng-2020-0012.
  • Borek, K., Romaniuk, W., Roman, K., Roman, M., & Kuboń, M. (2021). The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies 2021, 14(8), 2132. https://doi.org/10.3390/en14082132.
  • Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119-137. https://doi.org/10.1016/j.wasman.2017.10.049.
  • Cecchi, F., & Cavinato, C. (2015). Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Management & Research, 33(5), 429-438. https://doi.org/10.1177/0734242X14568610.
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource technology, 248, 57-67. https://doi.org/10.1016/j.biortech. 2017.06.133.
  • Chang, H. Q., Zhu, X. H., Wu, J., Guo, D. Y., Zhang, L. H., & Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136. https://doi.org/10.1016/S2095-3119(20)63341-X.
  • Czekała, W. (2021). Solid Fraction of Digestate from Biogas Plant as a Material for Pellets Production. Energies, 14(16), 5034. https://doi.org/10.3390/en14165034.
  • Czekała, W. (2022). Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water, 14(24), 4067. https://doi.org/10.3390/w14244067.
  • Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation, 9(5), 449. https://doi.org/10.3390/fermentation9050449.
  • Czekała, W., Janczak, D., Pochwatka, P., Nowak, M., & Dach, J. (2022). Gases Emissions during Composting Process of Agri-Food Industry Waste. Applied Sciences, 12, 9245. https://doi.org/10.3390/app12189245.
  • Dach, J., Pulka, J., Janczak, D., Lewicki, A., Pochwatka, P., & Oniszczuk, T. (2020). Energetic Assessment of Biogas Plant Projects Based on Biowaste and Maize Silage Usage. In IOP Conference Series: Earth and Environmental Science, 505(1), 012029. https://doi.org/10.1088/1755- 1315/505/1/012029.
  • Dalahmeh, S. S., Thorsén, G., & Jönsson, H. (2022). Open-air storage with and without composting as post-treatment methods to degrade pharmaceutical residues in anaerobically digested and dewatered sewage sludge. Science of the Total Environment, 806, 151271. https://doi.org/10.1016/j.scitotenv.2021.151271.
  • Demichelis, F., Piovano, F., & Fiore, S. (2019). Biowaste management in Italy: Challenges and perspectives. Sustainability, 11(15), 4213. https://doi.org/10.3390/su11154213.
  • Enebe, M. C., & Erasmus, M. (2023). Mediators of biomass transformation–a focus on the enzyme composition of the vermicomposting process. Environmental Challenges, 12, 100732. https://doi.org/10.1016/j.envc.2023.100732.
  • Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R., & Liu, J. (2022). New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology, 344, 126236. https://doi.org/10.1016/j.biortech.2021.126236.
  • Ghosh, S. K. (2016). Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences, 31, 31-39. https://doi.org/10.1016/j.proenv.2016.02.005.
  • Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P. C., & Sekhar, J. (2021). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302, 121153. https://doi.org/10.1016/j.fuel.2021.121153.
  • Główny Urząd Statystyczny. (2018). Ochrona środowiska 2018. Warszawa: Wydawnictwo GUS.
  • Główny Urząd Statystyczny. (2019). Ochrona środowiska 2019. Warszawa: Wydawnictwo GUS.
  • Główny Urząd Statystyczny. (2020). Ochrona środowiska 2020. Warszawa: Wydawnictwo GUS.
  • Główny Urząd Statystyczny. (2021). Ochrona środowiska 2021. Warszawa: Wydawnictwo GUS.
  • Główny Urząd Statystyczny. (2022). Ochrona środowiska 2022. Warszawa: Wydawnictwo GUS.
  • Graça, J., Murphy, B., Pentlavalli, P., Allen, C. C., Bird, E., Gaffney, M., Duggan, T., & Kelleher, B. (2021). Bacterium consortium drives compost stability and degradation of organic contaminants in in-vessel composting process of the mechanically separated organic fraction of municipal solid waste (MS-OFMSW). Bioresource Technology Reports, 13, 100621. https://doi.org/10.1016/j.biteb.2020.100621.
  • Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A., & Amir, S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, 127051. https://doi.org/10.1016/j.jclepro.2021.127051.
  • Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018). Monitoring of composting process parameters: a case study in Jordan. Waste and Biomass Valorization, 9, 2257-2274. https://doi.org/10.1007/ s12649-018-0197-x.
  • Jakubowski, T., & Sołowiej, P. (2016). Dynamics of temperature changes in thermophille phase of composting process in the aspect of sanitary condition of obtained material. Agricultural Engineering, 20(4), 69-75. https://doi.org/10.1515/agriceng-2016-0065.
  • Jędrczak, A. (2018). Composting and fermentation of biowaste-advantages and disadvantages of processes. Civil and Environmental Engineering Reports, 28(4), 71-87. https://doi.org/10.2478/ceer2018-0052.
  • Keng, Z. X., Chong, S., Ng, C. G., Ridzuan, N. I., Hanson, S., Pan, G. T., Lau, P. L., Supramaniam, C. V., Singh, A., Chin, C. F., & Lam, H. L. (2020). Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 261, 121220.https://doi.org/10.1016/j.jclepro.2020.121220.
  • Koryś, K.A., Latawiec, A.E., Grotkiewicz, K., & Kuboń, M. (2019). The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability, 11, 6515. https://doi.org/10.3390/su11226515.
  • Kovačić, Đ., Lončarić, Z., Jović, J., Samac, D., Popović, B., & Tišma, M. (2022). Digestate Management and Processing Practices: A Review. Applied Sciences, 12(18), 9216. https://doi.org/10.3390/app12189216.
  • Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A., & Kocira, S. (2022). Energy Potential of Biogas Production in Ukraine. Energies, 15, 1710. https://doi.org/10.3390/en15051710.
  • Kukharets, S., Hutsol, T., Glowacki, S., Sukmaniuk, O., Rozkosz, A. Tkach, O. (2021). Concept of Biohydrogen Production by Agricultural Enterprises. Agricultural Engineering, 25(1), 63-72. https://doi.org/10.2478/agriceng-2021-0005.
  • Luangwilai, T., Sidhu, H., & Nelson, M. (2021). Understanding the factors affecting the self-heating process of compost piles: Two-dimensional analysis. ANZIAM Journal, 63, C15-C29. https://doi.org/10.21914/anziamj.v63.17119.
  • Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International journal of environmental research and public health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224.
  • Mengqi, Z., Shi, A., Ajmal, M., Ye, L., & Awais, M. (2023). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 13, 5445-5468. https://doi.org/10.1007/s13399-021-01438-5.
  • Neugebauer, M. (2018). Kitchen and garden waste as a source of heat for greenhouses. Agricultural Engineering, 22(1), 83-93. https://doi.org/10.1515/agriceng-2018-0008.
  • Obidziński, S., Joka Yildiz, M., Dąbrowski, S., Jasiński, J., & Czekała, W. (2022). Application of PostFlotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis. Energies, 15, 9427. https://doi.org/10.3390/en15249427.
  • Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., & Celano, G. (2018). Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123, 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016.
  • Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596.
  • Shan, G., Li, W., Gao, Y., Tan, W., & Xi, B. (2021). Additives for reducing nitrogen loss during composting: A review. Journal of Cleaner Production, 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308.
  • Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825.
  • Shi, M., Zhao, Y., Zhu, L., Song, X., Tang, Y., Qi, H., Cao, H., & Wei, Z. (2020). Denitrification during composting: Biochemistry, implication and perspective. International biodeterioration & biodegradation, 153, 105043. https://doi.org/10.1016/j.ibiod.2020.105043.
  • Sikorska, W., Musioł, M., Rydz, J., Kowalczuk, M., & Adamus, G. (2019). Kompostowanie przemysłowe jako metoda zagospodarowania odpadów z materiałów poliestrowych otrzymywanych z surowców odnawialnych. Polimery, 64(11-12), 818-827. https://doi.org/10.14314/polimery.2019.11.11dx.doi.org/10.14314/polimery.2019.11.11.
  • Smith, M. M., & Aber, J. D. (2018). Energy recovery from commercial-scale composting as a novel waste management strategy. Applied energy, 211, 194-199. https://doi.org/10.1016/j.apenergy.2017.11.006.
  • Sołowiej, P., Pochwatka, P., Wawrzyniak, A., Łapiński, K., Lewicki, A., & Dach, J. (2021). The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183. https://doi.org/10.3390/en14041183.
  • Szala, B., & Paluszak, Z. (2008). Wpływ procesu kompostowania bioodpadów w kontenerowej technologii Kneer na inaktywację jaj glist Ascaris suum. Medycyna Weterynaryjna, 64(3), 361-36.
  • Thirunavukkarasu, A., Nithya, R., Kumar, S. M., Priyadharshini, V., Kumar, B. P., Premnath, P., Sivashankar, R., & Sathya, A. B. (2022). A business canvas model on vermicomposting process: key insights onto technological and economical aspects. Bioresource Technology Reports, 18, 101119. https://doi.org/10.1016/j.biteb.2022.101119.
  • Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., Chu, Y. M. (2021). Prospects of bioenergy production from organic waste using anaerobic digestion technology: a mini review. Frontiers in Energy Research, 9, 627093. https://doi.org/10.3389/fenrg.2021.627093.
  • Valverde-Orozco, V., Gavilanes-Terán, I., Idrovo-Novillo, J., Carrera-Beltrán, L., Basantes-Cascante, C., Bustamante, M. A., & Paredes, C. (2023). Agronomic, Economic and Environmental Comparative of Different Aeration Systems for On-Farm Composting. Agronomy, 13(3), 929, https://doi.org/10.3390/agronomy13030929.
  • Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In A. Makan (Eds.), Humus and humic substances-recent advances. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.105803.
  • Vuković, A., Velki, M., Ečimović, S., Vuković, R., Štolfa Čamagajevac, I., & Lončarić, Z. (2021). Vermicomposting-Facts, benefits and knowledge gaps. Agronomy, 11(10), 1952. https://doi.org/10.3390/agronomy11101952.
  • Waliszewska, H., Zborowska, M., Stachowiak-Wencek, A., Waliszewska, B., & Czekała, W. (2019). Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers, 11(5), 1-10. https://doi.org/10.3390/polym11050835.
  • Weiland, P. (2010). Biogas production: current state and perspectives. Applied microbiology and biotechnology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7.
  • Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26. https://doi.org/10.1007/s13593-020-00657-w.
  • Zhang, T., Wu, X., Shaheen, S. M., Abdelrahman, H., Ali, E. F., Bolan, N. S., Ok, Y. S., Li, G., Tsang, D. C. W., & Rinklebe, J. (2022a). Improving the humification and phosphorus flow during swine manure composting: a trial for enhancing the beneficial applications of hazardous biowastes. Journal of hazardous materials, 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906.
  • Zhang, Y., Chen, M., Guo, J., Liu, N., Yi, W., Yuan, Z., & Zeng, L. (2022)b. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Engineering in Life Sciences, 22(5), 376-390. https://doi.org/10.1002/elsc.202100102.
  • Zhao, X., Tan, W., Peng, J., Dang, Q., Zhang, H., & Xi, B. (2020). Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environment international, 135, 105380. https://doi.org/10.1016/j.envint.2019.105380.
  • Zhong, X. Z., Li, X. X., Zeng, Y., Wang, S. P., Sun, Z. Y., & Tang, Y. Q. (2020). Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresource technology, 306, 123091. https://doi.org/10.1016/j.biortech.2020.123091.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-880eba47-1d36-4c99-b343-dfeaf1d3cdf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.