PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural safety assessment of shaft steelwork – a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shaft steelwork is a component of critical infrastructure in underground mines. It connects the mining areas to the surface and enables the transport of personnel, equipment, and raw materials. Its failure or malfunction poses a threat to people and causes economic losses. Shaft steelwork is an exceptional engineering structure exposed to dynamic loads from large masses moving at high speeds and is subject to intensive deterioration resulting from corrosion and geological or mining-induced deformations. These issues cause shaft steelwork to be subject to high structural safety requirements, design oversizing, demanding maintenance procedures, and costly replacement of corroded members. The importance and unique working conditions of shaft steelwork create practical design and maintenance problems that are of interest to engineers and scientists. This paper reviews publications on the structural safety of rigid shaft steelwork and summarises the range of research from the detection of guide rail failures through the assessment of load effects and guide resistance, to the evaluation of structural reliability. The effects of guide rail failures on guiding forces, models of the conveyance-steelwork interaction, the load-carrying capacity of shaft steelwork under advanced corrosion, and the probabilistic assessment of structural reliability are presented. Significant advances in understanding the mechanical behaviour of shaft steelwork and assessing its properties have been reported. This review summarises the current state of research on shaft steelwork structural safety and highlights key future development directions.
Słowa kluczowe
Rocznik
Strony
655--670
Opis fizyczny
Bibliogr. 53 poz., fot., rys., wykr.
Twórcy
  • AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] J. Kostrz, Mine Shaft Sinking (in Polish), Szkoła Eksploatacji Podziemnej, Kraków (2014).
  • [2] A. Karge, Modern Shaft Hoisting Equipment (in Polish), Śląsk, Katowice (1977).
  • [3] G.J. Krige, Commentary on SANS 10208:3 – 2001 Edition 3, SAISC, Johannesburg (2001).
  • [4] A. Kędziora, Maintenance of Shaft Hoisting Equipment (in Polish), Śląsk, Katowice (1983).
  • [5] G. Bruneau, D.B. Tyler, J. Hadjigeorgiou, Y. Potvin, Influence of faulting on a mine shaft – a case study: Part I – Background and instrumentation. Int. J. Rock Mech. Min. Sci. 40, 95-111 (2003). DOI: https://doi.org/10.1016/S1365-1609(02)00115-6.
  • [6] G. Bruneau, M.R. Hudyma, J. Hadjigeorgiou, Y. Potvin, Influence of faulting on a mine shaft – a case study: Part II – Numerical modelling. Int. J. Rock Mech. Min. Sci. 40, 113-125 (2003). DOI: https://doi.org/10.1016/S1365-1609(02)00116-8.
  • [7] J. Zhao, C. Ma, X. Xiao, Y. Jiang, Research on deformation law of guide rails caused by mine vertical shafts under non-mining action. Eng. Fail. Anal. 134, 106089 (2022). DOI: https://doi.org/10.1016/j.engfailanal.2022.106089.
  • [8] X. Xingming, L. Zhan-Fang, Z. Jun, Study on fault mechanism of shaft hoist steelwork. Procedia Earth Planet. Sci. 1, 1351-1356 (2009). DOI: https://doi.org/10.1016/j.proeps.2009.09.208.
  • [9] B. Wu, W. Li, F. Jiang, Fault diagnosis of mine shaft guide rails vibration signal analysis based on dynamic time warping. Symetry 500 (10), 1-16 (2018). DOI: https://doi.org/10.3390/sym10100500.
  • [10] J. Yao, Y. Ma, X. Xiao, T. Xu, Effect of misalignment failures of steel guides on impact responses in friction mine hoisting systems. Eng. Fail. Anal. 118, 104841 (2020). DOI: https://doi.org/10.1016/j.engfailanal.2020.104841.
  • [11] Lim Z. Zhu, D. Cheng, G. Shen, Y. Tang, A robust nonlinear controller with low-gain-state-observer for wire rope tension active control of hoisting systems. IEEE Access. 8, 111208-111222 (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2972750.
  • [12] D. Wang, D. Zhang, S. Ge, Effect of terminal mass on fretting and fatigue parameters of a hoisting rope during a lifting cycle in coal mine. Eng. Fail. Anal. 36, 407-422 (2014). DOI: http://dx.doi.org/10.1016/j.engfailanal.2013.11.006.
  • [13] Y. Guo, D. Zhang, X. Zhang, S. Wang, W. Ma, Experimental study on the nonlinear dynamic characteristics of wire rope under periodic excitation in a friction hoist. Shock Vibrat. 2020, 8506016 (2020). DOI: https://doi.org/10.1155/2020/8506016.
  • [14] J. Yao, X. Deng, C. Ma, T. Xu, Investigation of dynamic load in superdeep mine hoisting systems induced by drum winding. Shock Vibrat. 2021, 4756813, (2021). DOI: https://doi.org/10.1155/2021/4756813.
  • [15] J. Wang, Y. Pi, Y. Hu, X. Gong, Modeling and dynamic behavior analysis of a coupled multi-cable double drum winding hoister with flexible guides. Mech. Mach. Theory. 108, 191-208, (2017). DOI: http://dx.doi.org/10.1016/j.mechmachtheory.2016.10.021.
  • [16] Y. Zhu, T. Xu, C. Ma, J. Yao, Experimental study on longitudinal vibration of mine hosting rope subjected to disturbance excitations by ADAMS. Adv. Mech. Eng. 14 (1), 1-10, (2022). DOI: https://doi.org/10.1177/16878132221076818.
  • [17] J. Wu, Z. Kou, Theoretical coupling longitudinal-transverse model and experimental verification of transverse vibration of rope for multi-rope friction hoisting system. Int. J. Coal. Sci. Technol. 3 (1), 77-84, (2016). DOI: https://doi.org/10.1007/s40789-016-0110-9.
  • [18] Dz.U.2017 poz.1118. The Decree of the Minister of Energy of 23rd November 2016 on Specific Requirements for Operating Underground Well Sites (in Polish). Monitor Polski, Warszawa (2017).
  • [19] W. Batko, T. Korbiel, Shaft steelwork tests based on the global damping coefficient (in Polish). Diagnostyka 41, 27-38 (2007).
  • [20] W. Batko, T. Korbiel, Maintenance of mining shaft reinforcement based on global damping coefficient. Maint. Reliab. 1, 44-48 (2008).
  • [21] A. Borowiec, PhD thesis, Damage detection in beam structures using changes in modal model parameters (in Polish). Politechnika Rzeszowska, Poland (2009).
  • [22] X. Deng, J. Yao, D. Liu, R. Yan, Semi-active control of horizontal vibrations for mine hoisting containers using fuzzy skyhook control strategy. IEEE Access. 11, 49957-49970 (2023). DOI: https://doi.org/10.1109/ACCESS.2023.3278598.
  • [23] P. Heyns, M. Heyns, Simulation of mining conveyance dynamics. Trans. Instr. Min. Metall. 106, A77-A83 (1997).
  • [24] S. Wolny, Displacements in mechanical systems due to random inputs in a mine hoist installation. Eng. Trans. 65(3), 513-522 (2017).
  • [25] S. Wolny, Loads experienced by load-bearing components of mine hoist installations due to random irregularities and misalignments of the guide string. J. Mach. Constr. Maint. 3, 79-86 (2018).
  • [26] S. Wolny, F. Matachowski, Operating loads of the shaft steelwork- conveyance system due to random irregularities of the guiding strings. Arch. Min. Sci. 55 (3) 589-603 (2010).
  • [27] J. Yao, D. Liu, X. Deng, Response characteristics and suppression of transverse vibrations of mine hoisting conveyances excited by multiple faults. Shock Vibrat. 2023, 8822754 (2023). DOI: https://doi.org/10.1155/2023/8822754.
  • [28] S. Wolny, F. Matachowski, Analysis of loads and stresses in structural elements. Eng. Trans. 58 (3-4), 153-174 (2010).
  • [29] G.R. Thomas, COMRO Guidelines 21: Design for the dynamic performance of shaft steelwork and conveyances. COMRO, Johannesburg (1990).
  • [30] SANS 10208-4:2016 Design of structures for the mining industry Part 4: Shaft system structures. SABS Standards Division, Pretoria (2016).
  • [31] AS/NZS 3785.6:2015 Underground mining – Shaft equipment Part 6: Fixed guides, rope guides and rubbing ropes for conveyances, Australian/New Zealand Standard, Sydney (2015).
  • [32] ISO 19426-5:2018 Structures for mine shafts – Part 5: Shaft system structures, ISO, Geneva (2018).
  • [33] M. Płachno, The issue of the impact of the dynamics of the shaft guidance on the operational safety of hoisting conveyances (in Polish). Bezpieczeństwo Pracy w Górnictwie 4, (1988).
  • [34] M. Płachno, The problem of transverse vibrations of hoisting conveyances (in Polish). Zeszyty naukowe Politechniki Śląskiej. Górnictwo 180, (1989).
  • [35] M. Khan, G. Krige, Evaluation of the structural integrity of aging mine shafts. Engi. Struct. 24, 901-907 (2002). DOI: https://doi.org/10.1016/S0141-0296(02)00028-7.
  • [36] J. Hansel, A. Cichociński, Z. Hansel, M. Płachno, T. Rokita, A. Skorupa, M. Wójcik, New methods of designing hoist conveyances and shaft steelwork, AGH, Kraków (1994).
  • [37] M. Płachno, New approach to the design of shaft steelwork. Arch. Min. Sci. 50 (4), 465-496 (2005).
  • [38] M. Kiercz, Experiments on measuring the guiding forces (in Polish), WUG. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 8, 21-25 (2009).
  • [39] E. Graffstein-Malkiewicz, K. Leśniewski, Corrosion in Coal Mining (in Polish). Śląsk, Katowice (1971).
  • [40] E. Remiorz, S. Mikuła, The synergy of fatigue, corrosion and abrasive wear processes in operation of mining round link chains. Arch. Min. Sci. 66 (1), 29-42 (2021). DOI: https://doi.org/10.24425/ams.2021.136690.
  • [41] J. Sheng, J. Xia, H. Chang, Bending behavior of corroded H‐shaped steel beam in underground environment. Appl. Sci. 938 (11), 1-18 (2021). DOI: https://doi.org/10.3390/app11030938.
  • [42] J. Sheng, J. Xia, R. Ma, Experimental study on the coupling effect of sulfate corrosion and loading on the mechanical behavior of steel and H-section beam. Constr. Build. Mater. 189, 711-718 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.011.
  • [43] B. Craig, Some corrosion and metallurgy issues in coal mines. Mater. Perform. 57 (2), 44-46 (2018).
  • [44] P. Fiołek, J. Jakubowski, K. Tomczak, Code calculations for local stability of shaft guides. Studia Geotech. et Mech. 39 (3), 11-16 (2017). DOI: https://doi.org/10.1515/sgem-2017-0025.
  • [45] EN-1993-1-1 Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings, CEN, Brussels (2005).
  • [46] P. Fiołek, J. Jakubowski, Local buckling of highly corroded hot-rolled box-section beams. J. Constr. Steel Res. 157, 359-370 (2019). DOI: https://doi.org/10.1016/j.jcsr.2019.03.009.
  • [47] P. Fiołek, J. Jakubowski, Assessment of the bending moment capacity of naturally corroded box-section beams. Materials 5766 (14), 1-18 (2021). DOI: https://doi.org/10.3390/ma14195766.
  • [48] P. Fiołek, J. Jakubowski, K. Tomczak, Failure modes of shaft steelwork in the state of advanced corrosion. Eng. Fail. Anal. 146, 107059 (2023). DOI: https://doi.org/10.1016/j.engfailanal.2023.107059.
  • [49] J. Jakubowski, P. Fiołek, Data-driven approach to structural analysis of shaft steelwork under corrosion. Eng. Struct. 281, 115741 (2023). DOI: https://doi.org/10.1016/j.engstruct.2023.115741.
  • [50] J. Jakubowski, P. Fiołek, Probabilistic structural reliability assessment of underground shaft steelwork. Tunn. Undergr. Space Technol. 130, 104755 (2022). DOI: https://doi.org/10.1016/j.tust.2022.104755.
  • [51] J. Jakubowski, P. Fiołek, Evaluation of stiffness and dynamic properties of a mine shaft steelwork structure through in situ tests and numerical simulations. Energies 664 (14),1-16 (2021). DOI: https://doi.org/10.3390/en14030664.
  • [52] M. Gwóźdź, A. Machowski, P. Żwirek, Selected Issues of Reliability of Steel Structures in Buildings (in Polish), PK, Kraków (2013).
  • [53] EN 1993-1-9 Eurocode 3: Design of steel structures – Part 1-9: Fatigue. CEN, Brussels (2005).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-880a8b50-0a62-41f9-ac5b-92c4802e145e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.