PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Phytoremediation of 137Cs Contaminated Soils During the Cultivation of Nectar-Pollinating Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The man-made activity of mankind has led to the emergence of many global problems and caused the deterioration of the quality of the natural environment (air, water, soil). Of particular concern is the contamination of agricultural land with toxicants, in particular, radionuclides, which, entering the soil – plant – human body food chain, can reach toxic levels. Therefore, an important task is the removal of hazardous substances from the soil. Phytoremediation can be one of the effective methods for reducing its pollution. The article examines the effectiveness of phytoremediation of soils contaminated as a result of the accident at the Chernobyl nuclear power plant in certain territories of Polissia of Ukraine (Korosten district of Zhytomyr region). Nectar-pollinating plants were selected for the research, which was carried out for two years: great globe-thistle (Echinops sphaerocephalus), milk thistle (Silybum marianum), and white melilot (Melilotus albus). The results of the research showed that in the dry vegetative mass of milk thistle, great globe-thistle, and white melilot, the specific activity of 137Cs over the two years of research was in the range from 30.8 Bq/kg to 238.5 Bq/kg, the accumulation coefficient – from 0.135 to 0.985, and the hazard coefficient – from 0.055 to 0.395. The highest indicators of specific activity and accumulation coefficient of 137Cs were observed in the vegetative mass of the white melilot, which amounted to 238.5 Bq/kg and 0.96, respectively, comparatively lower values – 2.3 times and 2.3 times were found in the vegetative mass of milk thistle, 2.8 times and 7.1 times – in the vegetative mass of the great globe-thistle. At this level of accumulation of 137Cs in the vegetative mass of nectarine plants from the soil, on average, over two years of research, 1130550 Bq of this radionuclide was removed from the soil per hectare of agricultural land with milk thistle, 621250 Bq with great globe-thistle, and 2851650 Bq with white melilot. The removal of 137Cs with the vegetative mass of nectarine plants reduced the content of this radionuclide in the soil per 1 kg – from 3.4% to 8% on average over two years of research.
Rocznik
Strony
316--321
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Lviv National Environmental University, Volodymyra Velykoho Str. 1, Dublyany, Lviv Region, 30831, Ukraine
  • Vinnytsia National Agrarian University, Soniachna Str. 3, Vinnytsia, 21008, Ukraine
  • National University of Water and Environmental Engineering, Soborna St. 11, Rivne, 33028, Ukraine
  • Higher Education Institution «Podillia State University», Shevchenko Str. 12, Kamianets-Podilskyi, 32316, Ukraine
  • National University of Water and Environmental Engineering, Soborna St. 11, Rivne, 33028, Ukraine
autor
  • Higher Education Institution «Podillia State University», Shevchenko Str. 12, Kamianets-Podilskyi, 32316, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony st. 15, Kyiv, 03041, Ukraine
  • National University of Water and Environmental Engineering, Soborna St. 11, Rivne, 33028, Ukraine
  • Lviv National Environmental University, Volodymyra Velykoho Str. 1, Dublyany, Lviv Region, 30831, Ukraine
Bibliografia
  • 1. Aleksenitser M., Bodnarchuk L., Kubaichuk V. 1996. Accumulation of radiocesium by honey plants. Apiary, 5, 30. (in Ukrainian)
  • 2. Ashraf S., Ali Q., Zahir Z.A., Ashraf S., Asghar H.N. 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 174, 714–727. https://doi:10.1016/j.ecoenv.2019.02.068
  • 3. Burger A., Lichtscheidl I. 2018. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci Total Environ, 618, 1459–1485. https://doi: 10.1016/j.scitotenv.2017.09.298
  • 4. Cannon G., Kiang J. 2022. A review of the impact on the ecosystem after ionizing irradiation: wildlife population. Int J Radiat Biol, 98(6), 1054–1062. https://doi:10.1080/09553002.2020.1793021
  • 5. Dursun S., Symochko L., Mankolli H. 2020. Bioremediation of heavy metals from soil: an overview of principles and criteria of using. Agroecological journal, 3, 6–12. https://doi.org/10.33730/2077-4893.3.2020.211521
  • 6. Gupta D.K., Chatterjee S., Datta S., Voronina A.V., Walther C. 2017. Radionuclides: Accumulation and Transport in Plants. Rev Environ Contam Toxicol, 241, 139–160. https://doi:10.1007/398_2016_7
  • 7. Herlina L., Widianarko B., Purnaweni H., Sudarno S., Sunoko H. 2020. Phytoremediation of Lead Contaminated Soil Using Croton (Cordiaeumvariegatum) Plants. Journal of Ecological Engineering, 21(5), 107–113. https://doi.org/10.12911/22998993/122238
  • 8. Kaste J.M., Volante P., Elmore A.J. 2021. Bomb 137Cs in modern honey reveals a regional soil control on pollutant cycling by plants. Nat Commun, 12(1), 1937. https://doi:10.1038/s41467-021-22081-8
  • 9. Kato N., Kihou N., Ichihashi H., Yabusaki S., Fujiwara H., Kurishima K., Noda T. 2015. Potassium fertilizer and other materials as countermeasures to reduce radiocesium levels in rice: Results of urgent experiments in 2011 responding to the Fukushima Daiichi Nuclear Power Plant accident. Soil Science and Plant Nutrition, 61, 179–190. https://doi:10.1080/00380768.2014.995584
  • 10. Kutsenko M. 2014. Holovaten round head – highly productive honey. Apiary, 3, 20–21. (in Ukrainian)
  • 11. Lavrinenko Yu., Vlaschuk A., Drobit A., Vlaschuk О. 2019. Seed productivity of white one-year white clover varieties in the south of Ukraine. Scientific reports of National University of Life and Environmental Sciences of Ukraine, 2(78). http://dx.doi.org/10.31548/dopovidi2019.02.007. (in Ukrainian)
  • 12. Pourimani R., Noori M., Madadi M. 2016. Determination of Radionuclides Concentration and Average Annual Committed Effective Dose Due to Ingestion for Some Medicinal and Edible Plants from Shazand (Markazi Province) Iran. Iranian Journal of Medical Physics, 13, 109–117.
  • 13. Razanov S., Landin V., Nedashkivskyi V., Ohorodnichuk H., Gucol G., Symochko L., Komynar M. 2022. Intensity of 137Cs transition into nectar-pollinating plants and beekeeping products during reclamation of radioactively contaminated soils. International Journal of Ecosystems and Ecology Science (IJEES), 12(1), 291–298. https://doi.org/10.31407/ijees12.134. (in Ukrainian)
  • 14. Razanov S., Razanova A., Àmons S., Gutsol G. 2021. Yield, chemical composition and the level of accumulation of heavy metals in the vegetative mass and seeds of milk thistle (Silybum marianum L.) in different types of organic fertilizer. Ecology, environment and conservation (Eco. Env. & Cons.), 27(4), 1609–1617. (in Ukrainian)
  • 15. Sharma S., Singh B., Manchanda V.K. 2015. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res Int., 22(2), 946–962. https://doi:10.1007/s11356-014-3635-8
  • 16. Shevchenko T., Hlushchenko L. 2018. Features of the use of natural medicinal plants. Agroecological journal, 2, 81–86. https://doi.org/10.33730/2077-4893.2.2018.157853. (in Ukrainian)
  • 17. Shin R., Adams E. 2017. Cesium uptake in plants: Mechanism, regulation and application for phytoremediation. Impact of Cesium on Plants and the Environment. Basel: Springer International Publication Switzerland, 101–124. https://doi:10.1007/978-3-319-41525-3_6
  • 18. Singh B.S.M., Dhal N.K., Kumar M. 2022. Phytoremediation of 137Cs: factors and consequences in the environment. Radiat Environ Biophys, 61(3), 341–359. https:// doi:10.1007/s00411-022-00985-3
  • 19. Steinhauser G., Brandl A., Johnson T.E. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ, 470–471, 800–817. https://doi:10.1016/j.scitotenv.2013.10.029
  • 20. Tkachuk O.P., Tsygansky V.І. 2019. Medonus potential of pedient multi-year herbs in intensive farm is of Ukraine. Agricultural Science and Food Technology, 3(106), 43–51. (in Ukrainian)
  • 21. Wieczorek J., Kaczor M., Romańczyk G., Grońska M., Boryło A. 2020. Radioactivity of honey in central and southern Poland. J Environ Radioact, 222, 106376. https://doi:10.1016/j.jenvrad.2020.106376
  • 22. Yamashita J., Enomoto T., Yamada M., Ono T., Hanafusa T., Nagamatsu T., Sonoda S., Yamamoto Y. 2014. Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident. J Plant Res., 127(1), 11–22. https://doi: 10.1007/s10265-013-0605-z
  • 23. Zakhariya A.V., Davydova H.I., Gotska S.М. 2022. Melliferous features of medicinal plants. Scientific and production journal «Beekeeping of Ukraine», 1(2), 71–84. (in Ukrainian)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88024d92-a872-4020-b7aa-d7c78de894ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.