PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of Carbon Monoxide Concentration Reduction on Active Carbon Contact System in Burning Polystyrene Foam

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the wastes generated by PT Beton Elemenindo Perkasa is polystyrene foam waste. Processing of this type of waste is still done with open burning so it has an impact on health and the environmental quality degradation. One of the polystyrene foam waste processing technologies is by constructing a combustion furnace equipped with carbon filter. Activated carbon is one of the air filter media that can absorb harmful gases from the combustion process. The purpose of this research is to identify the effectiveness of carbon monoxide (CO) concentration reduction on active carbon contact system using variation of particle size. This research is a kind of an experimental study involving post test with control design. The number of samples was calculated based on the number of treatments and the number of repetitions in the study. This research used 2 kinds of treatment, including 20 mesh and 30 mesh in 9 repetitions. Independent T-Test statistical analysis showed a significant difference (p-value = 0.001) between the variation of particle size of activated carbon and the CO parameters with the average of the most effective reduction percentage on particle-sized active carbon of 30 mesh was 77.95%.
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Health, Bandung Health Polytechnic, Cimahi Utara, 40514, Doctorate Program of Environmental Studies, Diponegoro University, Semarang, Indonesia
autor
  • Department of Environmental Health, Bandung Health Polytechnic, Cimahi Utara, Indonesia
Bibliografia
  • 1. Ardiani Y., Dwi T., Achmad T. 2016. Reduce the concentration of carbon monoxide from mainstreams cigarette smoke by using coconut sehll activated carbon filter. International Journal of Current Research, 8 (8), 35586-35591.
  • 2. Basuki K. T. 2008. Reduction of CO and NO2 concentrations on exhaust emissions by using local inhibitor TiO2 media on activated carbon. JFN 1(1), 45-64.
  • 3. Danarto Y.C., Samun, T. 2008. The effect of carbon activation of rice husk on the metal adsorption process of Cr (VI). Ekuilibrium, 7(1), 13-16.
  • 4. Fikri, E., Purwanto., Henna, R.S. 2015. Modelling of household hazardous waste (HHW) management in Semarang City (Indonesia) by using life cycle assessment (LCA) approach to reduce green-house gas (GHG) emissions. Procedia Environmental Science, 23(2015), 123-129.
  • 5. Fikri, E., Purwanto., Henna, R.S. 2016. Life cycle assessment of household hazardous waste management options for Semarang City, Indonesia. Int. J. Environment and Waste Management, 17(2), 146-157.
  • 6. Fitrianti A.E. 2016. Determination of the essential oil level of the sunkist orange peel (citrus sinensis l. Osbeck) as an alternative to natural styrofoam. Indonesian Journal of Pharmaceutical Science, 3(2), 47-52.
  • 7. Jamilatun, S., Martomo S. 2014. Making of activated charcoal from coconut shell and its application for liquid smoke purification. Spektrum Industri. 12(1), 1-14.
  • 8. Jaya F.T., 2014. Adsorption of CO, NO, and NOx emissions using activated carbon from cocoa fruit leaf waste (Theobroma cacao L.) on four-wheeled vehicles, Makassar. Ph.D. Thesis, Hasanudin University, Makasar.
  • 9. Khairunisa R. 2008. The combination of electrolysis and adsorption techniques uses activated carbon to decrease the concentration of phenol compounds in water. Ph.D. Thesis, Universitas Indonesia, Jakarta.
  • 10. Kurniati. 2008. Utilization of oil palm shells as activated charcoal. Jurnal Penelitian Ilmu Teknik, 8(2), 96-103.
  • 11. Maryanto. 2009. Decrease in carbon monoxide (CO) emissions by addition of activated charcoal to motor vehicles in Yogyakarta. Jurnal Fakultas Kesehatan Masyarakat, 3(3), 198-205.
  • 12. Notoatmodjo S. 2012. Health research methodology. Rineka Cipta, Jakarta.
  • 13. Nurullita U., Mifbakhuddin. 2015. Adsorbtion of indoor carbon monoxide (CO) gas with coconut shell activated carbon and durian skin, semarang. The 2nd University Research Coloquium, 297-306.
  • 14. Subekti P. 2009. Effect of the use of exhaust gas absorbing media on air pollution control devices for diesel-engined vehicles, riau. APTEK, 1(1), 1-11.
  • 15. Verlina W.O.V. 2014. The potential of coconut shell activated charcoal as an adsorbent of CO, NO, and NOx gas emissions in motor vehicles, Makassar. Ph.D. Thesis, Universitas Hasanudin, Makasar.
  • 16. Wicaksono B. 2011. Processing waste styrofoam, orange peel, and sanseveiria fibers into synthetic yarns of economic value. Ph.D. Thesis, Institut Pertanian Bogor, Bogor.
  • 17. Yuliusman W., Wahyu P., Yulianto S.N. 2013. Selection of adsorbents for carbon monoxide adsorption using isothermal langmuir adsorption model. Reaktor, 14(3), 225-233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-880161cd-6f5d-4e9d-87fb-042a72c4dfc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.