PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural Evolution During Laser Surface Alloying of Ductile Cast Iron with Titanium

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diode laser surface alloying process was used to the in-situ synthesis of TiC-reinforced composite surface layers on the ductile cast iron substrate. The obtained composite surface layers were investigated using optical and scanning electron microscopy, and XRD diffraction. It was found that the morphology and fraction of TiC phase is directly dependent upon both the concentration of titanium in the molten pool and also the solidification rate. With increasing titanium content, the fraction of TiC increases, whereas the fraction of cementite decreases. The TiC phase promotes a heterogeneous nucleation of primary austenite grains, what reduces a tendency of cracking in the alloyed layers.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Welding Department, 18 A. Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] J. R. Davis. ASM Specialty Handbook, Cast Irons, 1996, ASM International.
  • [2] K. Janerka, M. Kondracki, J. Jezierski, J. Szajnar, M. Stawacz, J. Mater. Eng. Perform. 23, 2174-2181 (2014).
  • [3] A. Studnicki, R. Dojka, M. Gromczyk, M. Kondracki, Arch. Foundry Eng. 16, 117-123 (2016).
  • [4] B. S. Yilbas, I. Toor, C. Karatas, J. Malik, I. Ovali, Opt. Laser Eng. 64, 17-22 (2015).
  • [5] J. H. Abbud, Materials and Design 35, 677-684 (2012).
  • [6] K. F. Alabeedi, J. H. Abboud, K.Y. Bnounis, Wear 266, 925-933 (2009).
  • [7] M. Król, P. Snopiński, B. Tomiczek, T. Tański, W. Pakieła, W. Sitek, P. Est. Acad. Sci. 65/2, 107-116 (2016).
  • [8] D. Janicki, Proc. SPIE 8703, Laser Technology 2012: Applications of Lasers, 87030Q (2013).
  • [9] D. Janicki, M. Musztyfaga-Staszuk, Stroj. Vestn-J. Mech. E. 62 (6), 363-372 (2016).
  • [10] A. Lisiecki, Metals 5, 54-69 (2015).
  • [11] D. Janicki, Appl. Mech. Mater. 809-810, 423-428 (2015).
  • [12] M. Bonek, Arch. Metall. Mater. 59 (4), 1647-1651 (2014).
  • [13] M. Musztyfaga-Staszuk, L. A. Dobrzański, Cent. Eur. J. Phys. 12 (12), 836-842 (2014).
  • [14] H. I. Park, K. Nakata, S. Tomida, J. Mater. Sci. 35, 747-755 (2000).
  • [15] A. Klimpel, L. A. Dobrzański, A. Lisiecki, D. Janicki, J. Mater. Process. Tech. 164, 1046-1055 (2005).
  • [16] A. Czupryński, J. Górka, M. Adamiak, Metalurgija 55 (2), 173-176 (2016).
  • [17] J. Górka, T. Kik, A. Czupryński, W. Foreiter, Weld. 28 (10), 749-755 (2014).
  • [18] S. Boncel, J. Górka, S. Milo, P. Shaffer, K. Koziol, Materials Letters 116, 53-56 (2014).
  • [19] J. F. Lancaster, Metallurgy of welding, 1980 Springer Netherland.
  • [20] C. R. Heiple, J. R. Roper, R. T. Stanger, J. Aden, Weld. J. 62, 72-77 (1983).
  • [21] N. Zarubova, V. Kraus, J. Cermak. J. Mater. Sci. 27, 3487-3496 (1992).
Uwagi
EN
Publication of this article was funded by statutory grant of Faculty of Mechanical Engineering, Silesian University of Technology.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88007d8e-8710-4522-9a73-41fea1426722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.