PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35° C to 70° C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t 1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35° C and 70° C were 197 h and 1.3 h respectively. Additionally, t 1/2 of catalase Aspergillus niger at the temperature of 5° C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35° C to 70° C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.
Rocznik
Strony
67--72
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, University of Science and Technology Bydgoszcz, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst. Eng. 35(9), 1523−1530. DOI: 10.1007/s00449-012-0742-0.
  • 2. Kaddour, S., López-Gallego, F., Sadoun, T., Fernandez Lafuente, R. & Guisan, J.M., (2008). Preparation of an immobilized − stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. J. Mol. Catal. B: Enzym. 55, 142−145. DOI: 10.1016/j.molcatb.2008.03.006.
  • 3. Akertek, E. & Tarhan, L. (1995). Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotechnol. 50(3), 291–303. DOI: 10.1007/BF02788099.
  • 4. Madhu, A. & Chakraborty, J.N. (2017). Developments in application of enzymes for textile processing. J. Clean. Prod. 145, 114–133. DOI: 10.1016/j.jclepro.2017.01.013.
  • 5. Giorgiana, G.A. (2017). Catalase immobilization - A review. Biochem. Eng. J. 117, 1–20. DOI: 10.1016/j.bej.2016.10.021.
  • 6. Pudlarz, A.M., Czechowska, E., Ranoszek-Soliwoda, K., Tomaszewska, E., Celichowski, G., Grobelny, J. & Szemraj, J. (2018). Immobilization of recombinant human catalase on gold and silver nanoparticles. Appl. Biochem. Biotechnol. 185(3), 717–735. DOI: 10.1007/s12010-017-2682-2.
  • 7. Röcker, J., Schmitt. M., Pasch, L., Ebert, K. & Grossmann, M. (2016). The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 210, 660–670. DOI: 10.1016/j.foodchem.2016.04.093.
  • 8. Miłek, J. (2018). Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng. 35(3), 995–1004. DOI: 10.1590/0104-6632.20180353s20160617.
  • 9. Miłek, J. & Wójcik, M. (2011). Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. Przem. Chem. 90(6), 1260–1263. http://sigma-not.pl/publikacja60227-wplyw-temperatury-na-rozklad-nadtlenku-wodoru-przezkatalaze-terminox-ultra-przemysl-chemiczny-2011-6.html.
  • 10. Miłek, J., Wójcik, M. & Verschelde, W. (2014). Thermal stability for the effective use of commercial catalase. Pol. J. Chem. Tech. 16(4), 75–79. DOI: 10.2478/pjct-2014-0073.
  • 11. Jürgen-Lohmann, D.L. & Legge, R.L. (2006). Immobilization of bovine catalase in sol–gels, Enz. Microb. Technol. 39, 626–633. DOI: 10.1016/j.enzmictec.2005.11.015.
  • 12. Elsebai, B., Ghica, M.E., Abbas, M.N. & Brett, C.M.A. (2017). Catalase based hydrogen peroxide biosensor for cercury determination by inhibition measurements, J. Hazard. Mater. 340, 344–350. DOI: 10.1016/j.jhazmat.2017.07.021.
  • 13. Xu, Q., Cai, L., Zhao, H., Tang, J., Shen, Y., Hu, X. & Zeng, H. (2015). Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosens. Bioelectron. 63, 294–300. DOI: 10.1016/j.bios.2014.07.055.
  • 14. Cantemir, A.R., Raducan, A., Puiu, M. & Oancea, D. (2013). Kinetics of thermal inactivation of catalase in the presence of additives. Proc. Biochem. 48, 471−477. DOI: 10.1016/j.procbio.2013.02.013.
  • 15. Díaz, A., Muñoz-Clares, R.A., Rangel, P., Valdés, V.J. & Hansberg, W. (2005). Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie. 87, 205–214. DOI: 10.1016/ j.biochi.2004.10.014.
  • 16. De Borba, T.M., Machado, T.B., Brandelli, A., Kalil, S.J. (2018). Thermal stability and catalytic properties of protease from Bacillus sp. P45 active in organic solvents and ionic liquid. Biotechnol. Prog. 34, 1102–1108. DOI: 10.1002/btpr.2672.
  • 17. Anthon, G.E. & Barrett, D.M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. J. Agric. Food Chem. 50, 4119–4125. DOI: 10.1021/jf011698i.
  • 18. Schwab, M. & Pinto, J.C. (2007). Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant, Chem. Eng. Sci. 62, 2750–2764. DOI: 10.1016/j.ces.2007.02.020.
  • 19. Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L., & Ribeiro, E.J. (2012). Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian J. Chem. Eng. 29(01), 15–24. DOI: 10.1590/S0104-66322012000100002.
  • 20. Kikani, B.A. & S ingh, S .P. (2012). The stability and thermodynamic parameters of a very thermostable and calciumindependent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Proc. Biochem. 47(12), 1791–1798. DOI: 10.101 6/ j.procbio.2012.06.005.
  • 21. Hooda, P.V. (2014). Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support, Appl. Biochem. Biotechnol. 172, 115–130. DOI: 10.1007/s12010-013-0498-2.
  • 22. Gudelj, M., Fruhwirth, G.O., Paar, A., Lottspeich, F., Robra, K.H., Cavaco-Paulo, A. & Gübitz, G.M. (2001). A catalaseperoxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5, 423–429. DOI: 10.1007/s007920100218.
  • 23. Lorentzen, M.S., Moe, E.H., Jouve, M., Willassen, N.P. (2006). Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles 10, 427-440. DOI: 10.1007/s00792-006-0518-z.
  • 24. Moosavi-Movahedi, M.A. (1994). Interaction of Aspergillus niger catalase with sodium N-dodecyl sulphate. Pure Appl. Chem. 66, 71–75. DOI: 10.1016/1357-2725(96)00044-1.
  • 25. Prieto, G., Suárez, M.J., González-Pérez, A., Ruso, J.M. & Sarmiento, F. (2004). A spectroscopic study of the interaction catalase–cationic surfaktant (n-decyltrimethylammonium bromide) in aqueous solutions at different pH and temperatures, Phys. Chem. Chem. Phys. 6, 816–821. DOI: 10.1039/ B308466C.
  • 26. Gouzi, H., Depagne, C., Coradin. T. (2011). Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J. Agric. Food Chem. 60(1), 500–506. DOI: 10.1021/jf204104g.
  • 27. Çetinus, Ş.A. & Öztop, H.N. (2000). Immobilization of catalase on chitosan film. Enz. Microb. Technol. 26, 497–501. DOI: 10.1016/S0141-0229(99)00189-1.
  • 28. Tukel, S.S. & Alptekin, O. (2004). Immobilization and kinetics of catalase onto magnesium silicate. Proc Biochem. 39, 2149–2155. DOI: 10.1016/j.procbio.2003.11.010.
  • 29. Vatsyayan, P. & Goswami, P. (2016). Highly active and stable large catalase isolated from a hydrocarbon degrading Aspergillus terreus MTCC 6324. Enzyme Res. 4379403. DOI: 10.1155/2016/4379403.
  • 30. Vasić-Rački, D., Findrik, Z. & Presečki, A.V. (2011). Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91, 845–856. DOI: 10.1007/s00253-011-3414-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87ffc317-dead-468a-a1b2-62c186916d3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.