PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the use of Aerogel on the Surface of Basalt Fabric

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The layer of aerogel was applied to the surface of basalt fabric due to the possibility of improving a fabric protecting against the influence of hot environmental factors. The analysis of aerogel surface roughness and thickness of the obtained sample, resistance to contact heat for the contact temperature between 100°C and 250°C, and tests of resistance to the penetration of thermal radiation were carried out. In addition, thermal conductivity, thermal resistance, thermal diffusion, thermal absorption, and surface roughness were determined. The obtained results indicate the unevenness of aerogel application on the surface of basalt fabric. For this reason, work should be carried out on an appropriate technology that will allow them to be applied evenly on the surface of the fabric. The parameters tested and the results obtained are promising in terms of the possibility of using the fabric obtained in protective gloves.
Rocznik
Strony
168--177
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz University of Technology, Lodz, Poland
  • Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz University of Technology, Lodz, Poland
  • Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Mazraeh-Shahi, Z. T., Shoushtari, A. M., Bahramian, A. R., Abdouss, M. (2014). Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fi ber composite. Fibers and Polymers, 15(10), 2154-2159.
  • [2] Oh, K. W., Kim, D. K., Kim, S. H. (2009). Ultra-porous flexible PET/Aerogel blanket for sound absorption and thermal insulation. Fibers and Polymers, 10(5), 731-737.
  • [3] Thapliyal, P. C., Singh, K. (2014). Aerogels as promising thermal insulating materials: An overview. Journal of Materials, 2014, 1-10.
  • [4] Greszta, A., Krzemińska, S., Okrasa, M. (2019). Influence of aging factors on the properties of aerogels with different degrees of granulation. Fibres & Textiles in Eastern Europe, 27(4)(136), 50-58.
  • [5] Venkataraman, M., Mishra, R., Kotresh, T. M., Militky, J., Jamshaid, H. (2016). Aerogels for thermal insulation in high-performance textiles. Textile Progress, 48(2), 55-118.
  • [6] Venkataraman, M., Mishra, R., Weiner, J., Mazari, A., Militky, J., et al. (2014). Innovative techniques for characterization of nonwoven insulation materials embedded with aerogel. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(9), 898-905.
  • [7] Krzemińska, S., Greszta, A. (2018). Application of aerogels in textile materials for protection against heat (in Polish). Przegląd Włókienniczy - Włókno, Odzież, Skóra, 1, 33-36.
  • [8] Shaid, A., Furgusson, M., Wang, L. (2014). Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fi re fi ghter’s protective clothing. Chemical and Materials Engineering, 2(2), 37-43.
  • [9] Jiang, Y., Zhang, L., Xu, H., Zhong, Y., Mao, Z. (2017). Preparation and characterization of thermal protective aluminum hydroxide aerogel/PSA fabric composites. Journal of Sol-Gel Science and Technology, 82, 370-379.
  • [10] Kumbhar, V. P. (2014). An overview: Basalt rock fi bers – New construction material. Acta Engineering International, 2(1), 11-18.
  • [11] Frydrych, I. (2008). Clothing material science - Raw materials on the protective clothing. Part I: Clothing protecting against fi re (in Polish). Przegląd Włókienniczy – Włókno Odzież Skóra, 6, 29-33.
  • [12] Militký, J., Kovačič, V., Bajzík, V. (2007). Mechanical properties of basalt fi laments. Fibers & Textiles in Eastern Europe, 15(5-6), 49-53.
  • [13] Medvedyev, O., Tsybulya, Y. (2005). Basalt use in hot gas fi ltration. Filtration & Separation, 42(1), 34-37.
  • [14] Liu, X., Wang, T., Zhuang, M., Xin, B., Liu, W. (2016). Investigation of the thermal transfer behavior of single layer woven fabrics at different temperatures. Journal of Engineered Fibers and Fabrics, 11(1), 9-16.
  • [15] Song, G., Mandal, S., Rossi, R. (Eds.). (2017). Thermal protective clothing for firefighters. Woodhead Publishing Series in Textiles, 189, Elsevier, Amsterdam.
  • [16] Miśkiewicz, P., Frydrych, I., Cichocka, A., Pawlak, W. (2017). Considerations on applying selected techniques of CVD and PVD processes for modifying basalt fabrics used for protective gloves. In: Frydrych, I., Bartkowiak, G., Pawłowa, M. (Eds.), Innovations in protective and e-textiles in balance with comfort and ecology, Lodz University of Technology, Lodz, p. 120-130.
  • [17] Miśkiewicz, P. (2018). Selected personal protective equipment for applications in a hot work environment. World Scientific News, 109, 143-154.
  • [18] Luximon, A. (Ed.). (2013). Handbook of footwear design and manufacture. Woodhead Publishing Series in Textiles, 141, Elsevier, Amsterdam.
  • [19] PN EN ISO 12127-1:2016. Clothing for protection against heat and flame – Determination of contact heat transmission through protective clothing or constituent materials – Part 1: Contact heat produced by heating cylinder.
  • [20] PN EN 407:2007. Protective gloves against thermal risks (heat and/or fire).
  • [21] PN EN ISO 6942:2005. Protective clothing – Protection against heat and fire – Method of test: Evaluation of materials and materials assemblies when exposed to a source of radiant heat.
  • [22] Hes, L., Dolezal, I. (2018). Indirect measurement of moisture absorptivity of functional textile fabrics. Journal of Physics: Conference Series, 1065, 1-4.
  • [23] Mangatasifmangat, A. E., Hes, L., Bajzik, V., Mazari, A. (2018). Thermal absorptivity model of knitted rib fabric and its experimental verification. Autex Research Journal, 18(1), 20-27.
  • [24] ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method - Terms, definitions and surface texture parameters.
  • [25] Matusiak, M. (2015). Digieye application in cotton colour measurement. Autex Research Journal, 15(2), 77-86.
  • [26] Malm, V., Straat, M., Walkenstrom, P. (2014). Effects of surface structure and substrate color on color differences in textile coatings containing effect pigments. Textile Research Journal, 84(2), 125-139.
  • [27] ISO 11664-4:2008(E)/CIE S 014-4/E:2007 Colorimetry – Part 4: CIE 1976 L*a*b* Colour Space.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87fa6c0a-692d-49c9-9175-41da930088ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.