PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Larval development and settlement of the barnacle Amphibalanus amphitrite from the Red Sea : Influence of the nauplii hatching season

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Barnacle Amphibalanus amphitrite adults were collected from the Jeddah coast of the Red Sea during different seasons. The nauplii released by adults in autumn, winter, spring and summer were reared under laboratory conditions to know the larval development duration and settlement in relation to the hatching season. The nauplii reared during winter (11 days) and autumn (13 days) took longer to reach the cypris stage compared to nauplii reared in summer (6 days) and spring (7 days). The most successful settlement of larvae was observed in spring and summer and the least successful — in winter. The observations of gonads showed that summer and spring are the active breeding season for A. amphitrite in the Red Sea. The results of this study indicated that the nauplii hatching season plays a significant role in the larval development and settlement of barnacles in the Red Sea.
Rocznik
Strony
170--177
Opis fizyczny
Bibliogr. 48 poz., wykr.
Twórcy
  • Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O.Box 80207, Jeddah, 21589, Saudi Arabia
autor
  • Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O.Box 80207, Jeddah, 21589, Saudi Arabia
Bibliografia
  • [1]. Al-Farawati, R. Al-Maradni, A. & Niaz, R.G. (2008). Chemical Characteristics (Nutrients, Fecal Sterols and Polyaromatic Hydrocarbons) of the Surface Waters for Sharm Obhur, Jeddah, Eastern Coast of the Red Sea. JKAU: Mar. Sci. 19: 95–119.
  • [2]. Al-Farawati, R. 2010. Environmental Conditions of the Coastal Waters of Southern Corinche, Jeddah, Eastern Red Sea: Physico-chemical Approach. Aust. J. Basic Appl. Sci. 4: 3324–3337.
  • [3]. Anil, A. C. (1991). Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan). Ph.D. thesis, Faculty of Agriculture, University of Tokyo.
  • [4]. Anil, A.C. Chiba, K. Okamoto K. & Kurokura, H. (1995). Influence of temperature and salinity on larval development of Balanus amphitrite: implications in fouling ecology. Mar. Ecol. Prog. Ser. 118: 159–166.
  • [5]. Anil, A.C. & Kurian, J. (1996). Influence of food concentration, temperature and salinity on the larval development of Balanus amphitrite. Mar. Biol. 127: 115–124.
  • [6]. Anil, A.C. Khandeparker, L. Desai, D.V. Baragi, L.V. & Gaonkar, C.A. (2010). Larval development, sensorymechanisms and physiological adaptations in acorn barnacles with special reference to Balanus amphitrite. J. Exp. Mar. Biol. Ecol. 392: 89–98. Doi::10.1016/j.jembe.2010.04.012.
  • [7]. Arnsberg, A.J. (2001). Arthropoda, Cirripedia: The Barnacles. In: A.L. Shanks (Ed.), An identification guide to the larval marine invertebrates of the pacific northwest (pp. 156–175) 1st ed, Corvallis: Oregon State University Press.
  • [8]. Barnes, H. & Barnes, M. (1975). The general biology of Verruca stroemia (O F Muller). V. Effect of feeding, temperature and light regime on breeding and moulting cycles. J. Exp. Mar. Biol. Ecol. 19:227–232.
  • [9]. Begon, M. Harper, J. L. & Towsend, C. R. (1996). Ecology: individuals, populations and communities. Oxford: Blackwell Science.
  • [10]. Brickner, I. Loya, Y. & Achituv, Y. (2010). Diverse life strategies in two coral-inhabiting barnacles (Pyrgomatidae) occupying the same host (Cyphastrea chalcidicum), in the northern Gulf of Eilat. J. Exp. Mar. Biol. Ecol. 392: 220–227. DoiDoi: 10.1016/j.jembe.2010.04.022.
  • [11]. Clare, A.S. Freet, R.K. & McClary, Jr., M. (1994). On the antennular secretion of the cyprid of Balanus amphitrite, and its role as a settlement pheromone. J. Mar. Biol. Ass. U.K. 74: 243–250.
  • [12]. Dattesh, D.V. & Anil, A.C. (2005). Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. J. Mar.Biol. Assoc. U K. 85: 909–920.
  • [13]. Desai, D.V. Anil, A.C. & Venkat, K. (2006). Reproduction in Balanus Amphitrite Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. Mar. Biol. 149: 1431–1441.
  • [14]. Dhams, H.U. & Hellio, C. (2009). Laboratory bioassays for screening marine antifouling compounds. In: C. Hellio, & D.M.Y. Yebra (Eds.), Advances in marine antifouling coatings and technologies (pp. 275–307). Cambridge: Woodshead Publishing.
  • [15]. Edwards, A.J. & Head, S.M. (1987). Key Environments: Red Sea. Oxford: Pergamon Press.
  • [16]. Fyhn, U.E.H. & Costlow, J.D. (1977). Histology and histochemistry of the ovary and oogenesis in Balanus amphitrite L. and B. eburneus Gould (Cirripedia, Crustacea). Biol. Bull. Mar. Biol.Lab. Woods Hole. 152:351–359.
  • [17]. Hellio, C. Marechal, J.P. Véron, B. Bremer, G. Clare, A.S. & Le Gal Y. (2004). easonal Variation of Antifouling Activities of Marine Algae from the Brittany Coast (France). Mar. Biotechnol. 6: 67–82.
  • [18]. Hirota, H. Tomono, Y. & Fusetani, N. (1996).Terpenoids with Antifouling Activity against Barnacle Larvae from the Marine Sponge Acanthella cavernosa. Tetrahedron. 57: 2359–2368.
  • [19]. Holm, E.R. McClary, M. & Rittschof, D. (2000). Variation in attachment of the barnacle Balanus amphitrite: sensation or something else? Mar. Ecol. Prog. Ser. 202: 153–162.
  • [20]. Jarrett, J.N. (2003). Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84: 384–390.
  • [21]. Kado, R. & Kim, M.H. (1996). Larval development of Octomeris sulcata Nilsson-Cantell (Cirripedia Thoracida: Chthamalidae) from Japan and Korea. Hydrobiologia 325: 65–76.
  • [22]. Khandeparker, L. Anil, A.C. & Raghukumar, S. (2002). Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite. Aquat. Microb. Ecol. 28: 37–54.
  • [23]. Karande, A.A. (1965). On cirripede crustaceans (barnacles) an important fouling group in Bombay waters. Proceedings of Symposium on Crustacea. J. Mar. Biol. Assoc. India 4: 1945–1950.
  • [24]. Leslie, H.M. Breck, E.N. Chan, F. Lubchenco, J. & Menge, B.A. (2005). Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Nat. Acad. Sci. USA 102: 10534–10539.
  • [25]. Lucas, M.I. Walker, G. Holland, D.L. & Crisp, D.J. (1979). An energy budget for the free-swimming and metamorphosis larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55: 221–229.
  • [26]. Lucas, M.I. & Crisp, D.J. (1987). Energy metabolism of eggs during embryogenesis in Balanus balanoides. J. Mar. Biol. Assoc. UK 67: 27–54.
  • [27]. Morcos, S.A. (1970). Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Annu. Rev. 8: 73–202.
  • [28]. Maréchal, J.-P. & Hellio, C. (2011) Antifouling activity against barnacle cypris larvae: Do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides?. Int. Biodeter. Biodegr. 65: 92–101. doi: 10.1016/j.ibiod.2010.10.002.
  • [29]. Pechenik, J. A. & Cerulli, T. R. (1991). Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. I. J. Exp. Mar. Biol. Ecol. 151:17–27.
  • [30]. Pillay, K.K. & Nair, N.B. (1972). Reproductive biology of the sessile barnacle, Balanus amphitrite communis (Darwin), of the southwest coast of India. Indian J. Mar. Sci. 1:8–16.
  • [31]. Qiu, J.W. & Qian, P.Y. (1997). Effects of food availability, larval source and culture method on larval development of Balanus amphitrite amphitrite Darwin: implications for experimental design. J. Exp. Mar. Biol. Ecol. 217: 47–61.
  • [32]. Qiu, J.W. & Qian, P.Y. (1999). Tolerance of the barnacle Balanus Amphitrite amphitrite to salinity and temperature stress: effects of previous experience. Mar. Ecol. Prog. Ser. 188: 123–132.
  • [33]. Raitsos, D.E. Pradhan, Y. Brewin, R.J.W. Stenchikov, G. & Hoteit, I. (2013). Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea. PLoS ONE 8: e64909. doi:10.1371/journal.pone.0064909.
  • [34]. Rittschof, D. Branscomb, E. S. & Costlow, J. D. (1984). Settlement and behaviour in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 82:131–146.
  • [35]. Rittschof, D. Clare, A.S. Gerhart, D.J. Mary, A. & Bonaventura, J. (1992). Barnacle in vitro assays for biologically active substances: Toxicity and Settlement inhibition assays using mass cultured Balanus amphitrite Amphitrite Darwin. Biofouling. 6: 115–12.
  • [36]. Satheesh, S. & Wesley, S.G. (2008). Seasonal variability in recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuar. Coast. Shelf Sci. 79: 518–524. Doi: 10.1016/j.ecss.2008.05.008.
  • [37]. Satheesh, S. & Wesley, S.G. (2009). Breeding biology of the barnacle Amphibalanus amphitrite (Crustacea: Cirripedia): Influence of environmental factors in a tropical coast. J. Mar. Biol. Assoc. UK. 89: 1203–1208. DOI: 10.1017/S0025315409000228.
  • [38]. Satuito, C.G. Shimizu, K. Natoyama, K. Yamazaki, M. & Fusetani, N. (1996). Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar. Biol. 127: 125–130.
  • [39]. Shaikh, E. A. Roff, J. C. & Dowidar, N M. (1986). Phytoplankton ecology and production in the Red Sea off Jiddah, Saudi Arabia. Mar. Biol. 92: 405–416.
  • [40]. Shalla, S.H.A. Ghobashy, A.F.A. & Hartnoll, R.G. (1995). Studies on the Barnacle Balanus amphitrite Darwin, 1854 (Cirripedia) from Lake Timsah in the Suez Canal. Crustaceana. 68: 503–517.
  • [41]. Tapia, F.J. & Navarrete, S.A. (2010). Spatial patterns of barnacle settlement in central Chile: Persistence at daily to inter-annual scales relative to the spatial signature of physical variability J. Exp. Mar. Biol. Ecol. 392: 151–159. Doi: 10.1016/j.jembe.2010.04.031.
  • [42]. Thiyagarajan, V. Venugopalan, V.P. Subramoniam, T. & Nair, K.V.K. (1996). Laboratory rearing of barnacle larvae (Balanus reticulatus) using Chaetocerous wigham as food. Indian J. Mar. Sci. 25: 365–367.
  • [43]. Thiyagarajan, V. Harder, T. & Qian, P-Y. (2002). Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J. Exp. Mar. Biol. Ecol. 274: 65–74.
  • [44]. Thiyagarajan, V. Hung, O.S. Chiu, J.M.Y. Wu, R.S.S. & Qian, P.Y. (2005). Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar. Ecol. Prog. Ser. 299: 229–237.
  • [45]. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25:1–45.
  • [46]. Underwood, A.J. & Fairweather, P.G. (1989). Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 4:16–20.
  • [47]. Wong, K.W.K. Lane, A.C. Leung, P.T.Y. & Thiyagarajan, V. (2011). Response of larval barnacle proteome to CO2-driven seawater acidification. Comp. Biochem. Phys. D 6: 310–321.
  • [48]. Yakovis, E.L. Artemieva, A.V. Fokin, M.V. Varfolomeeva, M.A. & Shunatova, N.N. (2013). Synchronous annual recruitment variation in barnacles and ascidians in the White Sea shallow subtidal 1999–2010. Hydrobiologia 706:69–79. DOI: 10.1007/s10750-012-1340-5 .
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87f78ed8-ba18-4e04-8bb6-3d42a60cdd5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.