PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of 1x5 Planar Array Microstrip Antenna with Edge Weighting to Increase Gain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.
Rocznik
Strony
683--690
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wykr.
Twórcy
  • Universitas Mercu Buana, Indonesia
  • Badan Riset dan Inovasi Nasional, Indonesia
autor
  • Institut Teknologi PLN, Indonesia
  • Universitas Mercu Buana, Indonesia
Bibliografia
  • [1] I. U. V Simanjuntak, A. D. Rochendi, and L. M. Silalahi, “Integrated Microstrip Antenna Reflector Based on SIW for 5G Networks,” Jurnal Elektronika dan Telekomunikasi, vol. 22, no. 1, pp. 1-7, 2022. http://doi.org/10.55981/jet.442
  • [2] D. Abijuru, M. R. Hamid, N. Seman, and M. Himdi, “A coplanar waveguide tapered slot antenna with beam switching capabilities,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 1, pp. 275-280, 2020. http://doi.org/10.11591/ijeecs.v20.i1.pp275-280
  • [3] J. Iqbal, U. Illahi, M. N. M. Yasin, M. A. Albreem, and M. F. Akbar, “Bandwidth enhancement by using parasitic patch on dielectric resonator antenna for sub-6 GHz 5G NR bands application,” Alexandria Engineering Journal, vol. 61, no. 6, pp. 5021-5032, 2022. https://doi.org/10.1016/j.aej.2021.09.049
  • [4] A. M. M. Dahlan and M. R. Kamarudin, “Shorted patch antenna with parasitic elements,” in 2009 Asia Pacific Microwave Conference, IEEE, 2009, pp. 2653-2655. http://doi.org/10.1109%2FAPMC.2009.5385353
  • [5] S.-W. Kim, H.-G. Yu, and D.-Y. Choi, “Analysis of patch antenna with broadband using octagon parasitic patch,” Sensors, vol. 21, no. 14, p. 4908, 2021. https://doi.org/10.3390/s21144908
  • [6] S. X. Ta, K. E. Kedze, D. N. Chien, and I. Park, “Bandwidth-enhanced low-profile antenna with parasitic patches,” Int J Antennas Propag, vol. 2017, 2017. https://doi.org/10.1155/2017/6529060
  • [7] Y. La Elo, F. Y. Zulkifli, and E. T. Rahardjo, “Design of wideband microstrip antenna with parasitic element for 4G/LTE application,” in 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, IEEE, 2017, pp. 110-113. https://doi.org/10.1109/QIR.2017.8168463
  • [8] Y. M. Pan, P. F. Hu, and X. Y. Zhang, “Parasitic patch antenna with filtering response,” in 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, 2016, pp. 315-316. https://doi.org/10.1109/APCAP.2016.7843220
  • [9] K. Veerendra, G. P. Ratna, and S. N. Bhavanam, “Design of microstrip patch antenna with parasitic elements for wideband applications,” International Journal Of Innovative Research In Technology, vol. 6, no. 2, pp. 324-327, 2019.
  • [10] D. W. Astuti, A. Firdausi, and M. Alaydrus, “Multiband double layered microstrip antenna by proximity coupling for wireless applications,” in 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, IEEE, 2017, pp. 106-109. https://doi.org/10.1109/QIR.2017.8168462
  • [11] S. Budiyanto, M. Asvial, and D. Gunawan, “IMPROVED PERFORMANCE OF HYBRID ALGORITHM FOR 3G - WIFIOFFLOAD NETWORKS,” J Teknol, vol. 78, no. 5-9, May 2016, https://doi.org/10.11113/jt.v78.8780
  • [12] Y. Zou, H. Li, Y. Xue, and B. Sun, “A high‐gain compact circularly polarized microstrip array antenna with simplified feed network,” International Journal of RF and Microwave Computer‐Aided Engineering, vol. 29, no. 12, p. e21964, 2019. https://doi.org/10.1002/mmce.21964
  • [13] S. Bahrami, G. Moloudian, S. R. Miri-Rostami, and T. Björninen, “Compact microstrip antennas with enhanced bandwidth for the implanted and external subsystems of a wireless retinal prosthesi,” IEEE Trans Antennas Propag, vol. 69, no. 5, pp. 2969-2974, 2020. http://.doi.org/10.1109/TAP.2020.3025245
  • [14] A. A. Deshmukh, V. Chaudhary, M. Shah, and S. Pawar, “Wide band designs of equilateral triangular microstrip antennas with parasitic sectoral patches,” Procedia Comput Sci, vol. 143, pp. 87-93, 2018. https://doi.org/10.1016/j.procs.2018.10.355
  • [15] V. A. P. Chavali and A. A. Deshmukh, “Multi-Resonator Wideband Designs of Semi-Circular Microstrip Antennas,” IETE J Res, pp. 1-8, 2022. https://doi.org/10.1080/03772063.2022.2120915
  • [16] R. Chopra and G. Kumar, “High gain broadband stacked triangular microstrip antennas,” Microw Opt Technol Lett, vol. 62, no. 9, pp. 2881-2888, 2020. https://doi.org/10.1002/mop.32372
  • [17] K. Da Xu, H. Xu, Y. Liu, J. Li, and Q. H. Liu, “Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement,” IEEE Access, vol. 6, pp. 11624-11633, 2018. https://doi.org/10.1109/ACCESS.2018.2794962
  • [18] K. Ding, C. Gao, D. Qu, and Q. Yin, “Compact broadband circularly polarized antenna with parasitic patches,” IEEE Trans Antennas Propag, vol. 65, no. 9, pp. 4854-4857, 2017. https://doi.org/10.1109/TAP.2017.2723938
  • [19] G. V. Raviteja, B. T. V Madhan, M. K. Sree, N. Avinash, and P. R. S. N. Surya, “Gain and bandwidth considerations for microstrip patch antenna employing U and quad L shaped slots with DGS and parasitic elements for WiMax/WiFi applications,” European Journal of Engineering and Technology Research, vol. 5, no. 3, pp. 327-330, 2020. http://doi.org/10.24018/ejers.2020.5.3.1834
  • [20] L. Wang, Z. Zhu, and Y. En, “Performance enhancement of broadband circularly polarized slot-microstrip antenna using parasitic elements,” IEEE Antennas Wirel Propag Lett, vol. 20, no. 12, pp. 2255-2259, 2021. https://doi.org/10.1109/LAWP.2021.3104850
  • [21] K. Ding, C. Gao, D. Qu, and Q. Yin, “Compact broadband circularly polarized antenna with parasitic patches,” IEEE Trans Antennas Propag, vol. 65, no. 9, pp. 4854-4857, 2017. https://doi.org/10.1109/TAP.2017.2723938
  • [22] R. Chopra and G. Kumar, “High gain broadband stacked triangular microstrip antennas,” Microw Opt Technol Lett, vol. 62, no. 9, pp. 2881-2888, 2020. https://doi.org/10.1002/mop.32372
  • [23] C. E. Santosa, J. T. S. Sumantyo, S. Gao, and K. Ito, “Broadband circularly polarized microstrip array antenna with curved-truncation and circle-slotted parasitic,” IEEE Trans Antennas Propag, vol. 69, no. 9, pp. 5524-5533, 2021. https://doi.org/10.1109/TAP.2021.3060122
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87f056aa-453d-456b-820c-2396ea1f95e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.