Identyfikatory
Warianty tytułu
Comparison of the usefulness of GRNN and RBF neural networks for predicting the corrections for the national time scale UTC(PL)
Języki publikacji
Abstrakty
W pracy przedstawiono wyniki badań sieci neuronowych typu GRNN zastosowanych do prognozowania poprawek dla krajowej skali czasu UTC(PL). Wyniki te porównano z wynikami otrzymanymi przy użyciu sieci neuronowej typu RBF, a także z wynikami otrzymanymi w GUM z zastosowaniem metody regresji liniowej. Prognozowanie poprawek prowadzono w oparciu o metodę regresji dla danych wejściowych powstałych na bazie dwóch szeregów czasowych sc1 (bez eliminacji trendu opisanego równaniem regresji liniowej) oraz sc2 (z eliminacją tego trendu). Prognozy zostały wykonane na 15 dzień dla 5 kolejnych miesięcy 2008 począwszy od stycznia (MJD 54479) do maja (MJD 54599) Z przeprowadzonych badań wynika, że otrzymane wartości błędu prognozy dla sieci neuronowej typu GRNN są zdecydowanie gorsze od błędów prognozy otrzymanych przy użyciu sieci neuronowej typu RBF.
The paper discusses the results of comparison of the usefulness of GRNN and RBF neural networks for predicting the corrections for the national time scale UTC(PL). The first chapter describes the national time scale UTC(PL), and also presents the problem of maintaining the best compatibility of the UTC(PL) with UTC. The second chapter describes the basic idea and principle of operation of the GRNN neural networks. The third chapter shows how the input data for the neural networks was prepared. Based on historical measurement data from the cesium atomic clock Cs2 and corrections of the UTC(PL) relative to UTC two time series (ts1 and ts2) were prepared, which were the basis for determining the input data for the neural networks. The fourth chapter describes the research results. The obtained research results shown that in the case of predicting the corrections for the polish time scale UTC(PL) using GRNN and RBF neural networks and the input data based on time series ts1 prediction errors have reached very large values. Predicting the corrections for the UTC(PL) based on time series ts2 was carried out in two ways. The first method assumed using the input data prepared on the basis of time series ts2 with values of two coefficients a0 and a1, which are the coefficients of linear regression equation. In the second case only coefficient a1 was used with the input data prepared on the basis of time series ts2. The best results was obtained using RBF neural network for the input data prepared on the basis of time series ts2 with a1 coefficient. For the GRNN neural network the obtained value of maximum prediction error for both method of data preparation was larger than in the case of using RBF neural network. Obtained values of prediction errors using GRNN neural network are on the same level with prediction errors obtained in the GUM using linear analytical regression method.
Wydawca
Czasopismo
Rocznik
Tom
Strony
972--974
Opis fizyczny
Bibliogr. 11 poz., wykr.
Twórcy
autor
- Uniwersytet Zielonogórski, Instytut Metrologii Elektrycznej, 65-246 Zielona Góra, ul. Podgórna 50
Bibliografia
- [1] Bernier L. G.: Use of the Allan Deviation and Linear Prediction for the Determination of the Uncertainty on Time Calibrations Against Predicted Timescales, IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 2, 2003, pp. 483-486.
- [2] BIPM Annual Report on Time Activities, Vol. 7, Sevres, BIPM 2012.
- [3] Czubla A., Konopka J., Nawrocki J.: Realization of atomic SI second definition in context UTC(PL) and TA(PL); Metrology and Measurement Systems, No. 2, 2006, pp. 149-159.
- [4] Davis J. A., Shemar S. L., Whibberley P. B.: A Kalman filter UTC(k) prediction and steering algorithm, NMS Physical Metrology Programme, United Kingdom.
- [5] Kaczmarek J., Miczulski W., Kozioł M., Czubla A.: Integrated System for Monitoring and Control of the National Time and Frequency Standard, IEEE Transactions on Instrumentation and Measurement, 2013, Vol. 62, No. 10, pp. 2828-2838.
- [6] Liao C. S., Chu F. D., Lin H. T., Tu K. Y., Chung Y. W., Hsu W. C.: Formation of a paper neural-fuzzy time scale in the Eastern Asia. Proc. 2011 Joint Conference of the IEEE International Frequency Control & European Frequency and Time Forum, San Fransisco, California, USA, May 1-5, 2011, pp. 292-295.
- [7] Luzar M., Sobolewski Ł., Miczulski W., Korbicz J.: Prediction of corrections for the Polish time scale UTC(PL) using artificial neural networks. Bulletin of the Polish Academy of Sciences: Technical Sciences 2013, Vol. 61, no. 3, s. 589-594.
- [8] Miczulski W., Cepowski M.: Wpływ typu sieci neuronowej i sposobu przygotowania danych na wynik prognozowania poprawek UTC - UTC(PL), Pomiary Automatyka Kontrola, nr. 11, 2010, s. 1330-1332.
- [9] Miczulski W., Sobolewski Ł, Influence of the GMDH neural network data preparation method on UTC(PL) correction prediction results. Metrology and Measurement Systems, Vol. XIX, No. 1, 2012, pp. 123-132.
- [10] Panfilo G. and Tavella P.: Atomic clock prediction based on stochastic differential equations, Metrologia, No 45, 2008, pp. 108-116.
- [11] Rutkowski L.: New Soft Computing Techniques for System Modelling, Pattern Classification and Image Processing, Springer- Verlag, Berlin Heidelberg, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87e99a0d-eefe-46cc-8cd7-d8828b932a83