PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Obtaining and Analysis of a New Aluminium Bronze Material Using Induction Furnace

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper-based alloys with the addition of Al present excellent properties and can be considered a proper choice for applications as contact materials based on their good strength and fret resistance. Cu-Al alloys are used in different systems parts as bearings, gears and worm gears. The intention is to replace steel materials with new copper-based materials for parts that work in a possible explosive environment to reduce the possibility of spark appearance. Copper-berilyum alloys are known as non-sparking alloys and are used in different tools obtaining for environments with possible explosive gaseous. Results from the obtaining and analysis of a new alloy based on CuAlBe are given. The material was melted in a vacuum induction furnace from CuBe master alloy and high purity aluminium and cast into a metallic die. The alloys obtained were analyzed using EDS - energy dispersive spectroscopy for chemical composition, OM-optical and SEM-electronic microscopy for the microstructure, and the electro-corrosion resistance was tested using linear Tafel diagram and cyclic potentiometry.
Słowa kluczowe
Twórcy
  • “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
  • “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
  • “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
  • “Gheorghe Asachi” University of Iasi, Faculty of Mechanical Engineering, Prof.dr.doc. D. Mangeron Street, No. 61-63, Iași 700050, Romania
  • “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
  • “Gheorghe Asachi” University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Street, no. 41, Iași 700050, Romania
Bibliografia
  • [1] X. Liu. D. Huang. C. Yan. Y. Zhou. W. Yan. Multi-directional forging and aging treatment effects on friction and wear characterization of aluminium-bronze alloy, Mater. Charact. 167, 110511 (2020).
  • [2] M. Ienciu, P. Moldovan, N. Panait, M. Buzatu, Development and casting of non-ferrous alloys, EDP, Bucureşti, (1982).
  • [3] L. Wen-sheng, W. Zhi-ping, l. Yang, G. Yong, X. Jian-lin, Preparation, mechanical properties and wear behaviours of novel aluminium bronze for dies, Trans. Nonferrous Met. Soc. China 16, 607-612 (2006).
  • [4] Z. Han, Y.F. He, H.C. Lin, H. Zhao, Dealloying characterizations of Cu-Al alloy in marine environment, J. Mater. Sci. Lett. 19, 393-395 (2000).
  • [5] H.J. Meigh, Rought aluminium bronzes properties, processes and structure, Maney Publishing, ISBN 978-1-906540-20-3 (2008).
  • [6] M. Makeshkumar, S.R. Surender, S. Arunprakash, R. Madesh, M. Sasi Kumar, K. Sudharsan, Microstructural and mechanical properties evaluation of dissimilar aluminum alloy and bronze joints using friction stir welding, Materials Today: Proceeding (2021). DOI: https://doi.org/10.1016/j.matpr.2021.05.563
  • [7] Y. Li, Y. Lian, Y Sun, Comparison of cavitation erosion behaviors between the as-cast and friction stir processed Ni-Al bronze in distilled water and artificial seawater, J. Mater. Res. Technol. 13, 906-918 (2021).
  • [8] N. Cimpoesu, S. Stanciu, D. Tesloianu, R. Cimpoesu, R. Popa, E. Moraru, A study of the damping capacity of mechanically processed Cu-9.2Al-5.3Mn-0.6Fe shape memory alloys, Met. Sci. Heat Treat. 58 (11-12), 729-733 (2017). DOI: https://doi.org/10.1007/s11041-017-0086-0
  • [9] Y.-R. Su, T.-H. Wu, I.-C. Cheng, Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys, J. Phys. Chem. Solids 151, 109915 (2021).
  • [10] V.H.C. de Albuquerque, T.A. de A. Melo, R.M. Gomes, S.J.G. de Lima, J.M.R.S. Tavares, Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy, Mater. Sci. Eng. A 528, 459-466 (2010).
  • [11] C. Bejinariu, D.C. Darabont, E.R. Baciu, I. Ionita, M.-A. Bernevigsava, C. Baciu, Considerations on the Method for Self Assessment of Safety at Work. Environ. Eng. Manag. J. 16, 1395-1400, (2017).
  • [12] D.-C. Darabont, R.I. Moraru, A.E. Antonov, C. Bejinariu, Managing new and emerging risks in the context of ISO 45001 standard, Qual.-Access Success 18, 11-14 (2017).
  • [13] D.C. Darabont, A.E. Antonov, C. Bejinariu, Key elements on implementing an occupational health and safety management system using ISO 45001 standard. in 8th International Conference on Manufacturing Science and Education (MSE 2017) - Trends in New Industrial Revolution, Bondrea, I., Simion, C., Inta, M., Eds., E D P Sciences: Cedex A, 2017, Vol. 121, P. UNSP 11007.
  • [14] M.G. Zaharia, S. Stanciu, R. Cimpoesu, I. Ionita, N. Cimpoesu, Preliminary results on effect of H2S on P265GH commercial material for natural gases and petroleum transportation, Appl. Surf. Sci. 438, 20-32 (2018).
  • [15] C. Panaghie, R. Cimpoesu, B. Istrate, N. Cimpoesu, M.-A. Bernevig, G. Zegan, A.-M. Roman, R. Chelariu, A. Sodor, New Zn3Mg-xy alloys: Characteristics, microstructural evolution and corrosion behavior, Materials 14 (10), 2505 (2021).
  • [16] Z. Song, S. Kishimoto, J. Zhu, Y. Wang, Study of stabilization of CuAlBe alloy during martensitic transformation by internal friction, Solid State Commun. 139, 235-239 (2006).
  • [17] V. Nedeff, C. Bejenariu, G. Lazar, M. Agop, Generalized lift force for complex fluid, Powder Technol. 235, 685-695 (2013). DOI: https://doi.org/10.1016/j.powtec.2012.11.027
  • [18] S. Montecinos, A. Cuniberti, Thermomechanical behavior of a CuAlBe shape memory alloy, J. Alloy. Compd. 457, 332-336 (2008).
  • [19] S. Montecinos, S.N. Simison, Study of the corrosion products formed on a multiphase CuAlBe alloy in a sodium chloride solution by micro-Raman and in situ AFM measurements, Appl. Surf. Sci. 257, 7732-7738 (2011).
  • [20] C.D. Florea, I. Carcea, R. Cimpoesu, S.L. Toma, I.G. Sandu, C. Bejinariu, Experimental Analysis of Resistance to Electrocorosion of a High Chromium Cast Iron with Applications in the Vehicle Industry, Rev. de chimie 68 (10), 2397-2401 (2017).
  • [21] T. Ma, B. Tan, L.G. Savas, K.Z. Kao, S. Zhang, R. Wang, N. Zeng, Y. He, Multidimensional insights into the corrosion inhibition of potassium oleate on Cu in alkaline medium: A combined experimental and theoretical investigation, Mat. Sci. Eng. B 272, 115330 (2021).
  • [22] C. Zeng, B. Zhan, A.H. Ettefagh, H. Wen, H. Yao, W.J. Meng, S. Guo, Mechanical, thermal, and corrosion properties of Cu-10Sn alloy prepared by laser-powder-bed-fusion additive manufacturing, Additive Manufacturing 35, 101411 (2020).
  • [23] G. Kear, B.D. Barker, F.C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media - a critical review, Corros. Sci. 46, 109-135 (2004).
  • [24] R. Cimpoesu, P. Vizureanu, I. Stirbu, A. Sodor, G. Zegan, M. Prelipceanu, N. Cimpoesu, N. Ioanid, Corrosion-resistance analysis of ha layer deposited through electrophoresis on Ti4Al4Zr metallic substrate, Appl. Sci. 11 (91), 4198 (2021).
  • [25] S. Montecinosa, P. Klímek, M. Sláma, S. Suarez, S. Simison, Corrosion behavior of a β CuAlBe shape memory alloy containing stress induced martensite, Appl. Surf. Sci. 466, 165-170 (2019).
  • [26] C.-P. Liu, S.-J. Chang, Y.-F. Liu, J. Su, Corrosion-induced degradation and its mechanism study of CueAl interface for Cu-wire bonding under HAST conditions, J. Alloy. Compd. 825, 154046 (2020).
  • [27] H.H. Kuo, W.H. Wang, Y.F. Hsu, Microstructural characterization of precipitates in Cu-10 wt.%Al-0.8 wt.%Be shape-memory alloy, Mater. Sci. Eng. A 430, 292-300 (2006).
  • [28] A.M. Alfantazi, T.M. Ahmed, D. Tromans, Corrosion behaviour of copper alloys in chloride media, Mater. Des. 30, 2425-2430 (2009).
  • [29] M. Chmielová, J. Seidlerová, Z. Weiss, X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions, Corros. Sci. 45, 883-889 (2003).
  • [30] M. Wang, Y. Zhang, M. Muhammed, Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions. III. The system Cu(I.II)-Cl-e at 298.15 K, Hydrometallurgy 45, 53-72 (1997).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87e81318-a211-481e-aeeb-e7837b848f22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.