PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applied a non-invasive method to blood glucose monitoring by hand skin image based on gray level co-occurrence matrix (GLCM) and artificial neural networks (ANN)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowane nieinwazyjnej metody monitorowania poziomu glukozy we krwi za pomocą obrazu skóry dłoni w oparciu o macierz współwystępowania poziomów szarości (GLCM) i sztuczne sieci neuronowe (ANN)
Języki publikacji
EN
Abstrakty
EN
This study develops a non-invasive method to predict blood glucose through image processing. For investigation, several invasive images and glucose levels were taken. Types of samples based on age classification, 20-60 years. For accuracy and simple analysis, 37 images of participants as volunteers, samples were evaluated and investigated under the gray level co-occurrence matrix (GLCM). In this study, an artificial neural network (ANN) was used for all training and hand texture testing to detect glucose levels. The performance of this model is evaluated using Root Mean Square Error (RMSE) and correlation coefficient (r). Clarke Error Grid Analysis (EGA) variance was used in this investigation to determine the accuracy of the method. The results showed that the RMSE was close to the standard value, the regression coefficient was 0.95, and the Clarke EGA analysis: 81.08% was in the A .% zone. So that the blood glucose prediction model using the GLCM-ANN method is feasible to apply.
PL
Niniejsze badanie rozwija nieinwazyjną metodę przewidywania stężenia glukozy we krwi poprzez przetwarzanie obrazu. W celu zbadania wykonano kilka inwazyjnych obrazów i poziomów glukozy. Rodzaje próbek na podstawie klasyfikacji wiekowej, 20-60 lat. Dla dokładności i prostej analizy, 37 obrazów uczestników jako ochotników, próbki zostały ocenione i zbadane w ramach macierzy współwystępowania poziomu szarości (GLCM). W tym badaniu sztuczna sieć neuronowa (ANN) została wykorzystana do wszystkich testów treningu i tekstury dłoni w celu wykrycia poziomu glukozy. Wydajność tego modelu ocenia się za pomocą błędu średniokwadratowego (RMSE) i współczynnika korelacji (r). W tym badaniu zastosowano analizę wariancji siatki błędów Clarke'a (EGA) w celu określenia dokładności metody. Wyniki pokazały, że RMSE była zbliżona do wartości standardowej, współczynnik regresji wyniósł 0,95, a analiza Clarke EGA: 81,08% znajdowała się w strefie A.%. Aby model przewidywania stężenia glukozy we krwi przy użyciu metody GLCM-ANN był możliwy do zastosowania.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Faculty of Engineering University of Hasanuddin Makassar Indonesia
  • Department of Electro-medical Technology, Health Polytechnic Muhammadiyah Makassar Indonesia
  • Department of Electrical Engineering, Faculty of Engineering University of Hasanuddin Makassar Indonesia
  • Department of Electrical Engineering, Faculty of Engineering University of Hasanuddin Makassar Indonesia
autor
  • Department of Electrical Engineering, Faculty of Engineering University of Hasanuddin Makassar Indonesia
Bibliografia
  • [1] W. Zheng et al., “Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance,” Microchem. J., vol. 157, no. February, p. 105010, 2020, doi: 10.1016/j.microc.2020.105010.
  • [2] X. Dong et al., “Influence of blood glucose level on the prognosis of patients with diabetes mellitus complicated with ischemic stroke,” no. 65, pp. 1–7, 2018, doi: 10.4103/1735-1995.223951.
  • [3] K. S. P and S. Am, “A study on the glycemic , lipid and blood pressure control among the type 2 diabetes patients of north Kerala , India,” Indian Heart J., vol. 70, no. 4, pp. 482–485, 2018, doi: 10.1016/j.ihj.2017.10.007.
  • [4] A. Kerimi, H. Nyambe, S. Alison, P. Ebun, O. Julia, and S. G. Yala, “Nutritional implications of olives and sugar : attenuation of post- prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein,” Eur. J. Nutr., vol. 58, no. 3, pp. 1315–1330, 2019, doi: 10.1007/s00394-018-1662-9.
  • [5] C. Beehan-quirk et al., “Investigating the effects of fatigue on blood glucose levels – implications for diabetes,” Transl. Metab. Syndr. Res., 2020, doi: 10.1016/j.tmsr.2020.03.001.
  • [6] K. Ogurtsova et al., “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract., vol. 128, pp. 40–50, 2017, doi: 10.1016/j.diabres.2017.03.024.
  • [7] Y. Sun, Y. Song, C. Liu, and J. Geng, “Saudi Journal of Biological Sciences Correlation between the glucose level and the development of acute pancreatitis,” Saudi J. Biol. Sci., vol. 26, no. 2, pp. 427–430, 2019, doi: 10.1016/j.sjbs.2018.11.012.
  • [8] S. R. Chinnadayyala, J. Park, A. T. Satti, D. Kim, and S. Cho, “Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles,” Electrochim. Acta, vol. 369, p. 137691, Feb. 2021, doi: 10.1016/j.electacta.2020.137691.
  • [9] S. Ghosal, A. Kumar, V. Udutalapally, and D. Das, “glucam: Smartphone based blood glucose monitoring and diabetic sensing,” IEEE Sens. J., vol. 21, no. 21, pp. 24869–24878, 2021.
  • [10] N. Duc, T. Van Nguyen, A. Duc, and H. Vinh, “ORIGINAL ARTICLE A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose,” Arab. J. Chem., vol. 11, no. 7, pp. 1134–1143, 2018, doi: 10.1016/j.arabjc.2017.12.035.
  • [11] F. Rui, G. Zhanxiao, L. Ang, C. Yao, W. Chenyang, and Z. Ning, “Sensors and Actuators : B . Chemical Noninvasive blood glucose monitor via multi-sensor fusion and its clinical evaluation,” Sensors Actuators B. Chem., vol. 332, no. September 2020, p. 129445, 2021, doi: 10.1016/j.snb.2021.129445.
  • [12] V. P. Rachim and W. Y. Chung, “Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring,” Sensors Actuators, B Chem., vol. 286, pp. 173–180, 2019, doi: 10.1016/j.snb.2019.01.121.
  • [13] M. S. I. M. Zin1, 2. M. A. K. Mustafah1, 3. F. Arith1, 4. A. A. M. Isa1, 5. L. Barukang2, and 6. G. Markarian, “Development of Low-Cost IoT-Based Wireless Healthcare Monitoring System,” Przegląd Elektrotechniczny, no. 1, pp. 222–227, 2022, doi: 10.15199/48.2022.01.48.
  • [14] H. Zhang, Z. Chen, J. Dai, W. Zhang, Y. Jiang, and A. Zhou, “A low-cost mobile platform for whole blood glucose monitoring using colorimetric method,” Microchem. J., vol. 162, no. October 2020, p. 105814, 2021, doi: 10.1016/j.microc.2020.105814.
  • [15] S. Muharom and B. Prasetyo, “Automatics Detect and ShooterRobot Based on Object Detection Using Camera,” Przegląd Elektrotechniczny, no. 1, pp. 50–54, 2022, doi: 10.15199/48.2022.01.07.
  • [16] E. R. Dougherty, Digital image processing methods. CRC Press, 2020.
  • [17] E. Seeram, “Digital image processing concepts,” in Digital Radiography, Springer, 2019, pp. 21–39.
  • [18] M. A. Jardine, J. A. Miller, and M. Becker, “Coupled X-raycomputed tomography and grey level co-occurrence matrices as a method for quantification of mineralogy and texture in 3D,” Comput. Geosci., vol. 111, pp. 105–117, 2018, doi: 10.1016/j.cageo.2017.11.005.
  • [19] I. Pantic, D. Dimitrijevic, D. Nesic, and D. Petrovic, “Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture,” J. Theor. Biol., vol. 406, pp. 124–128, 2016, doi: 10.1016/j.jtbi.2016.07.018.
  • [20] P. K. Bhagat, P. Choudhary, and K. M. Singh, A comparative study for brain tumor detection in MRI images using texture features. Elsevier Inc., 2019.
  • [21] N. J. Road, S. E. Inspection, Q. Bureau, F. Road, and F. District, “SYSTEM BASED ON NEURAL NETWORK COMPENSATING,” vol. 15, no. 7, pp. 725–735, 2021, doi: 10.24507/icicel.15.07.725.
  • [22] D. A. Anggoro and D. Novitaningrum, “MACHINE ( SVM ) AND ARTIFICIAL NEURAL NETWORK ( ANN ),” vol. 15, no. 1, pp. 9–18, 2021, doi: 10.24507/icicel.15.01.9.
  • [23] P. Agarwal and R. K. Srivastava, “INTRUSION DETECTION WITH NEIGHBOURHOOD COMPONENT ANALYSIS,” no. December, 2021, doi: 10.24507/icicel.15.12.XXX.
  • [24] M. N. S. ZAINUDIN1 et al., “A Framework for Chili Fruits Maturity Estimation using Deep Convolutional Neural Network,” Przegląd Elektrotechniczny, vol. 2021030955, no. 12, pp. 77–81, 2021, doi: 10.15199/48.2021.12.13.
  • [25] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, and E. Ott, “Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics,” Neural Networks, vol. 126, pp. 191–217, 2020, doi: 10.1016/j.neunet.2020.02.016.
  • [26] L. G. Wright et al., “physical systems.”
  • [27] T. Lu, X. Lü, H. Salonen, and Q. Zhang, “Novel hybrid modeling approach for utilizing simple linear regression models to solvemulti-input nonlinear problems of indoor humidity modeling,” Build. Environ., vol. 213, no. November 2021, p. 108856, 2022, doi: 10.1016/j.buildenv.2022.108856.
  • [28] B. V. Ayodele, S. I. Mustapa, N. Mohammad, and M. Shakeri,“Long-term energy demand in Malaysia as a function of energy supply: A comparative analysis of Non-Linear Autoregressive Exogenous Neural Networks and Multiple Non-Linear Regression Models,” Energy Strateg. Rev., vol. 38, p. 100750, 2021, doi: https://doi.org/10.1016/j.esr.2021.100750.
  • [29] O. M. Olatunji, I. T. Horsfall, E. Ukoha-Onuoha, and K. Osaaria, “Application of hybrid ANFIS-based non-linear regression modeling to predict the% oil yield from grape peels: Effect of process parameters and FIS generation techniques,” Clean. Eng. Technol., vol. 6, p. 100371, 2022.
  • [30] K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Error Grid Analysis of Reference and Predicted Blood Glucose Level Values as Obtained from the Normal and Prediabetic Human Volunteers,” vol. 5, no. 1, pp. 6–14, 2015, doi: 10.5923/j.ajbe.20150501.02.
  • [31] C. Hernandez-Matas, A. A. Argyros, and X. Zabulis, Retinal image preprocessing, enhancement, and registration. Elsevier Ltd., 2019.
  • [32] S. Gao, “International Journal of Cognitive Computing in Engineering Gray level co-occurrence matrix and extreme learning machine for Alzheimer ’ s disease diagnosis,” Int. J. Cogn. Comput. Eng., vol. 2, no. July, pp. 116–129, 2021, doi: 10.1016/j.ijcce.2021.08.002.
  • [33] P. K. Bhagat, P. Choudhary, and K. M. Singh, “A comparative study for brain tumor detection in MRI images using texture features,” in Sensors for Health Monitoring, Elsevier, 2019, pp. 259–287.
  • [34] D. Koundal and B. Sharma, “3 - Advanced neutrosophic set-based ultrasound image analysis,” Y. Guo and A. S. B. T.-N. S. in M. I. A. Ashour, Eds. Academic Press, 2019, pp. 51–73.
  • [35] H. T. Ho, W. K. Y. Yeung, and B. W. Y. Young, “Evaluation of ‘point of care’ devices in the measurement of low blood glucosein neonatal practice,” Arch. Dis. Child. Fetal Neonatal Ed., vol. 89, no. 4, pp. 356–360, 2004, doi: 10.1136/adc.2003.033548.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87e07b5e-7651-45ca-9d72-7a4d5409c6f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.