PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new approach in cancer treatment regimen using adaptive fuzzy back-stepping sliding mode control and tumor-immunity fractional order model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cancer is one of the leading factors of human mortality. The main goal of this article is to present and control a tumor treatment immunity. It can adaptively benefit from the advantages of back-stepping control, the sliding mode control, fuzzy control, and parameter estimation. The cancerous tumor proposed model is a Multi-Input Multi-Output (MIMO) nonlinear fractional-order model. A new back-stepping model based on the sliding mode controller is designed in this paper to deal with the convergence velocity and achieve a robust controller. A new combined Back-Stepping controller with the approach of sliding mode has been designed to solve the convergence velocity challenge, and to face the ordinary back-stepping robustness issue of the controller. Since nonlinear expressions are considered in an indefinite model, a fuzzy controller has been applied to model them. The parameters are estimated using the least-squares method to solve the challenge of uncertainty in parameters. The Back-Stepping model, combined with the sliding mode, has benefited from the advantage of a sliding mode controller, namely, its robustness against uncertainties. The simulation results have demonstrated that the proposed controller has led tumor cells to zero with a higher velocity compared to the integer-order model controller and the adaptive fuzzy conventional Back-Stepping controller.
Twórcy
  • Electrical Engineering Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
  • Electrical Engineering Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
Bibliografia
  • [1] Nasiri H, Kalat AA. Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment. Biomed Signal Process Control 2018;42:267–76.
  • [2] Bunimovich-Mendrazitsky S, Byrne H, Stone L. Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull Math Biol 2008;70(7):2055.
  • [3] Mamat M, Kartono A, Kartono A. Mathematical model of cancer treatments using immunotherapy, chemotherapy and biochemotherapy. Appl Math Sci 2013;7(5):247–61.
  • [4] Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019;2019.
  • [5] Itik M, Banks SP. Chaos in a three-dimensional cancer model. Int J Bifurc Chaos 2010;20(01):71–9.
  • [6] Kirschner D, Panetta JC. Modeling immunotherapy of the tumor–immune interaction. J Math Biol 1998;37(3):235–52.
  • [7] Isaac Oke S, Matadi MB, Xulu SS. Optimal control analysis of a mathematical model for breast Cancer. Math Comput Appl 2018;23(2):21.
  • [8] Martins ML, Ferreira Jr SC, Vilela MJ. Multiscale models for the growth of avascular tumors. Phys Life Rev 2007;4(2):128–56.
  • [9] Peskov K, Azarov I, Chu L, Voronova V, Kosinsky Y, Helmlinger G. Quantitative mechanistic modeling in support of pharmacological therapeutics development in immuno-oncology. Front Immunol 2019;10.
  • [10] Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinformatics 2018;19(6):1382–99.
  • [11] Rihan FA, Rihan NF. Dynamics of cancer-immune system with external treatment and optimal control. J Cancer Sci Ther 2016;8:257–61.
  • [12] Zhang Y, Zhang X, Zhang Y. Dynamical behavior analysis and control of a fractional-order discretized tumor model. DEStech transactions on engineering and technology research, (iect); 2016.
  • [13] Wei HC, Lin JT. Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction. Int J Bifurc Chaos 2013;23(04):1350068.
  • [14] Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface 2017;14(131):20170150.
  • [15] Batmani Y, Khaloozadeh H. Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter. Optim Control Appl Methods 2013;34(5):562–77.
  • [16] Itik M, Salamci MU, Banks SP. SDRE optimal control of drug administration in cancer treatment. Turk J Electr Eng Comput Sci 2010;18(5):715–30.
  • [17] Chareyron S, Alamir M. Model-free feedback design for a mixed cancer therapy. Biotechnol Prog 2009;25(3):690–700.
  • [18] N'Doye I, Voos H, Darouach M. Chaos in a fractional-order cancer system. In Control Conference (ECC), 2014 European. IEEE; 2014. p. 171–6.
  • [19] Chien TL, Chen CC, Huang CJ. Feedback linearization control and its application to MIMO cancer immunotherapy. Ieee Trans Control Syst Technol 2010;18 (4):953–61.
  • [20] Chen T, Kirkby NF, Jena R. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation. Comput Methods Programs Biomed 2012;108(3):973–83.
  • [21] Kiani EK, Kamyad AV, Shirzad H. Optimal immunotherapy control of aggressive tumors growth. Intell Control Autom 2012;3(2):168–75.
  • [22] Moradi H, Sharifi M, Vossoughi G. Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: a comparison between three hypotheses. Comput Biol Med 2015;56:145–57.
  • [23] Cappuccio A, Castiglione F, Piccoli B. Determination of the optimal therapeutic protocols in cancer immunotherapy. Math Biosci 2007;209(1):1–13.
  • [24] Liu Z, Wang Y, Huang Y, Kim BY, Shan H, Wu D, et al. Tumor vasculatures: a new target for cancer immunotherapy. Trends Pharmacol Sci 2019.
  • [25] Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in Cancer. Trends Immunol 2019;40(4).
  • [26] Moradi Zirkohi M. Finite-time adaptive fuzzy backstepping control of drug dosage regimen in cancer treatment. Trans Inst Meas Control 2019;41(12):3526–35.
  • [27] Zirkohi MM, Kumbasar T. Adaptive backstepping controller design for MIMO cancer immunotherapy using Laguerre polynomials. J Franklin Inst 2020.
  • [28] Rihan FA, Lakshmanan S, Hashish AH, Rakkiyappan R, Ahmed E. Fractional-order delayed predator–prey systems with Holling type-II functional response. Nonlinear Dyn 2015;80(1-2):777–89.
  • [29] Ferdi Y. Some applications of fractional order calculus to design digital filters for biomedical signal processing. J Mech Med Biol 2012;12(02):1240008.
  • [30] Hilfer R. Applications of fractional calculus in physics (Vol. 35, No. 12, pp. 87-130). Singapore: World scientific.; 2000.
  • [31] Arshad S, Baleanu D, Huang J, Tang Y, Al Qurashi MM. Dynamical analysis of fractional order model of immunogenic tumors. Adv Mech Eng 2016;8(7):1687814016656704.
  • [32] Mengus C, Muraro MG, Mele V, Amicarella F, Manfredonia C, Foglietta F, et al. In vitro modeling of tumor–Immune system interaction. ACS Biomater Sci Eng 2017;4(2):314–23.
  • [33] Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Heinemann V. Advances in cancer immunotherapy 2019–latest trends. J Exp Clin Cancer Res 2019;38(1):268.
  • [34] Zheng Y, Bao J, Zhao Q, Zhou T, Sun X. A spatio-temporal model of macrophage-mediated drug resistance in glioma immunotherapy. Mol Cancer Ther 2018;17(4):814–24.
  • [35] Arshad S, Sohail A, Javed S. Dynamical study of fractional order tumor model. Int J Comput Methods 2015;12(05):1550032.
  • [36] Sohail A, Arshad S, Javed S, Maqbool K. Numerical analysis of fractional-order tumor model. Int J Biomath 2015;8 (05):1550069.
  • [37] Öztürk I, Özköse F. Stability analysis of fractional order mathematical model of tumor-immune system interaction. Chaos Solitons Fractals 2020;133109614.
  • [38] Ucar E, Özdemir N, Altun E. Fractional order model of immune cells influenced by cancer cells. Math Model Nat Phenom 2019;14(3):308.
  • [39] Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscip J Nonlinear Sci 2019;29(8):083127.
  • [40] Rihan FA, Velmurugan G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos Solitons Fractals 2020;132109592.
  • [41] Ahrabi SS. Fractional model of Cancer immunotherapy and its optimal control for a PhD thesis; 2018.
  • [42] Efe MÖ. Fractional order systems in industrial automation—a survey. IEEE Trans Industr Inform 2011;7 (4):582–91.
  • [43] Rihan FA. Numerical modeling of fractional-order biological systems. In abstract and applied analysis, Vol. 2013. Hindawi; 2013.
  • [44] Shukla MK, Sharma BB. Backstepping based stabilization and synchronization of a class of fractional order chaotic systems. Chaos Solitons Fractals 2017;102:274–84.
  • [45] Scherer R, Kalla SL, Tang Y, Huang J. The Grünwald– Letnikov method for fractional differential equations. Comput Math With Appl 2011;62(3):902–17.
  • [46] Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA. Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 2014;19(9):2951–7.
  • [47] Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 1994;56(2):295–321.
  • [48] Botesteanu DA, Lipkowitz S, Lee JM, Levy D. Mathematical models of breast and ovarian cancers. Wiley Interdiscip Rev Syst Biol Med 2016;8(4):337–62.
  • [49] Mohammadzadeh A, Kaynak O. A novel fractional-order fuzzy control method based on immersion and invariance approach. Appl Soft Comput 2020;88106043.
  • [50] Bigdeli N, Ziazi HA. Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems. J Franklin Inst 2017;354 (1):160–83.
  • [51] Zouari F. Neural network based adaptive backstepping dynamic surface control of drug dosage regimens in cancer treatment. Neurocomputing 2019;366:248–63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87deaa6b-f7b7-4391-9c89-b1d98ecf0a1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.