Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cancer is one of the leading factors of human mortality. The main goal of this article is to present and control a tumor treatment immunity. It can adaptively benefit from the advantages of back-stepping control, the sliding mode control, fuzzy control, and parameter estimation. The cancerous tumor proposed model is a Multi-Input Multi-Output (MIMO) nonlinear fractional-order model. A new back-stepping model based on the sliding mode controller is designed in this paper to deal with the convergence velocity and achieve a robust controller. A new combined Back-Stepping controller with the approach of sliding mode has been designed to solve the convergence velocity challenge, and to face the ordinary back-stepping robustness issue of the controller. Since nonlinear expressions are considered in an indefinite model, a fuzzy controller has been applied to model them. The parameters are estimated using the least-squares method to solve the challenge of uncertainty in parameters. The Back-Stepping model, combined with the sliding mode, has benefited from the advantage of a sliding mode controller, namely, its robustness against uncertainties. The simulation results have demonstrated that the proposed controller has led tumor cells to zero with a higher velocity compared to the integer-order model controller and the adaptive fuzzy conventional Back-Stepping controller.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1654--1665
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
- Electrical Engineering Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
autor
- Electrical Engineering Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
Bibliografia
- [1] Nasiri H, Kalat AA. Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment. Biomed Signal Process Control 2018;42:267–76.
- [2] Bunimovich-Mendrazitsky S, Byrne H, Stone L. Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull Math Biol 2008;70(7):2055.
- [3] Mamat M, Kartono A, Kartono A. Mathematical model of cancer treatments using immunotherapy, chemotherapy and biochemotherapy. Appl Math Sci 2013;7(5):247–61.
- [4] Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019;2019.
- [5] Itik M, Banks SP. Chaos in a three-dimensional cancer model. Int J Bifurc Chaos 2010;20(01):71–9.
- [6] Kirschner D, Panetta JC. Modeling immunotherapy of the tumor–immune interaction. J Math Biol 1998;37(3):235–52.
- [7] Isaac Oke S, Matadi MB, Xulu SS. Optimal control analysis of a mathematical model for breast Cancer. Math Comput Appl 2018;23(2):21.
- [8] Martins ML, Ferreira Jr SC, Vilela MJ. Multiscale models for the growth of avascular tumors. Phys Life Rev 2007;4(2):128–56.
- [9] Peskov K, Azarov I, Chu L, Voronova V, Kosinsky Y, Helmlinger G. Quantitative mechanistic modeling in support of pharmacological therapeutics development in immuno-oncology. Front Immunol 2019;10.
- [10] Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinformatics 2018;19(6):1382–99.
- [11] Rihan FA, Rihan NF. Dynamics of cancer-immune system with external treatment and optimal control. J Cancer Sci Ther 2016;8:257–61.
- [12] Zhang Y, Zhang X, Zhang Y. Dynamical behavior analysis and control of a fractional-order discretized tumor model. DEStech transactions on engineering and technology research, (iect); 2016.
- [13] Wei HC, Lin JT. Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction. Int J Bifurc Chaos 2013;23(04):1350068.
- [14] Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface 2017;14(131):20170150.
- [15] Batmani Y, Khaloozadeh H. Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter. Optim Control Appl Methods 2013;34(5):562–77.
- [16] Itik M, Salamci MU, Banks SP. SDRE optimal control of drug administration in cancer treatment. Turk J Electr Eng Comput Sci 2010;18(5):715–30.
- [17] Chareyron S, Alamir M. Model-free feedback design for a mixed cancer therapy. Biotechnol Prog 2009;25(3):690–700.
- [18] N'Doye I, Voos H, Darouach M. Chaos in a fractional-order cancer system. In Control Conference (ECC), 2014 European. IEEE; 2014. p. 171–6.
- [19] Chien TL, Chen CC, Huang CJ. Feedback linearization control and its application to MIMO cancer immunotherapy. Ieee Trans Control Syst Technol 2010;18 (4):953–61.
- [20] Chen T, Kirkby NF, Jena R. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation. Comput Methods Programs Biomed 2012;108(3):973–83.
- [21] Kiani EK, Kamyad AV, Shirzad H. Optimal immunotherapy control of aggressive tumors growth. Intell Control Autom 2012;3(2):168–75.
- [22] Moradi H, Sharifi M, Vossoughi G. Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: a comparison between three hypotheses. Comput Biol Med 2015;56:145–57.
- [23] Cappuccio A, Castiglione F, Piccoli B. Determination of the optimal therapeutic protocols in cancer immunotherapy. Math Biosci 2007;209(1):1–13.
- [24] Liu Z, Wang Y, Huang Y, Kim BY, Shan H, Wu D, et al. Tumor vasculatures: a new target for cancer immunotherapy. Trends Pharmacol Sci 2019.
- [25] Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in Cancer. Trends Immunol 2019;40(4).
- [26] Moradi Zirkohi M. Finite-time adaptive fuzzy backstepping control of drug dosage regimen in cancer treatment. Trans Inst Meas Control 2019;41(12):3526–35.
- [27] Zirkohi MM, Kumbasar T. Adaptive backstepping controller design for MIMO cancer immunotherapy using Laguerre polynomials. J Franklin Inst 2020.
- [28] Rihan FA, Lakshmanan S, Hashish AH, Rakkiyappan R, Ahmed E. Fractional-order delayed predator–prey systems with Holling type-II functional response. Nonlinear Dyn 2015;80(1-2):777–89.
- [29] Ferdi Y. Some applications of fractional order calculus to design digital filters for biomedical signal processing. J Mech Med Biol 2012;12(02):1240008.
- [30] Hilfer R. Applications of fractional calculus in physics (Vol. 35, No. 12, pp. 87-130). Singapore: World scientific.; 2000.
- [31] Arshad S, Baleanu D, Huang J, Tang Y, Al Qurashi MM. Dynamical analysis of fractional order model of immunogenic tumors. Adv Mech Eng 2016;8(7):1687814016656704.
- [32] Mengus C, Muraro MG, Mele V, Amicarella F, Manfredonia C, Foglietta F, et al. In vitro modeling of tumor–Immune system interaction. ACS Biomater Sci Eng 2017;4(2):314–23.
- [33] Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Heinemann V. Advances in cancer immunotherapy 2019–latest trends. J Exp Clin Cancer Res 2019;38(1):268.
- [34] Zheng Y, Bao J, Zhao Q, Zhou T, Sun X. A spatio-temporal model of macrophage-mediated drug resistance in glioma immunotherapy. Mol Cancer Ther 2018;17(4):814–24.
- [35] Arshad S, Sohail A, Javed S. Dynamical study of fractional order tumor model. Int J Comput Methods 2015;12(05):1550032.
- [36] Sohail A, Arshad S, Javed S, Maqbool K. Numerical analysis of fractional-order tumor model. Int J Biomath 2015;8 (05):1550069.
- [37] Öztürk I, Özköse F. Stability analysis of fractional order mathematical model of tumor-immune system interaction. Chaos Solitons Fractals 2020;133109614.
- [38] Ucar E, Özdemir N, Altun E. Fractional order model of immune cells influenced by cancer cells. Math Model Nat Phenom 2019;14(3):308.
- [39] Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscip J Nonlinear Sci 2019;29(8):083127.
- [40] Rihan FA, Velmurugan G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos Solitons Fractals 2020;132109592.
- [41] Ahrabi SS. Fractional model of Cancer immunotherapy and its optimal control for a PhD thesis; 2018.
- [42] Efe MÖ. Fractional order systems in industrial automation—a survey. IEEE Trans Industr Inform 2011;7 (4):582–91.
- [43] Rihan FA. Numerical modeling of fractional-order biological systems. In abstract and applied analysis, Vol. 2013. Hindawi; 2013.
- [44] Shukla MK, Sharma BB. Backstepping based stabilization and synchronization of a class of fractional order chaotic systems. Chaos Solitons Fractals 2017;102:274–84.
- [45] Scherer R, Kalla SL, Tang Y, Huang J. The Grünwald– Letnikov method for fractional differential equations. Comput Math With Appl 2011;62(3):902–17.
- [46] Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA. Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 2014;19(9):2951–7.
- [47] Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 1994;56(2):295–321.
- [48] Botesteanu DA, Lipkowitz S, Lee JM, Levy D. Mathematical models of breast and ovarian cancers. Wiley Interdiscip Rev Syst Biol Med 2016;8(4):337–62.
- [49] Mohammadzadeh A, Kaynak O. A novel fractional-order fuzzy control method based on immersion and invariance approach. Appl Soft Comput 2020;88106043.
- [50] Bigdeli N, Ziazi HA. Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems. J Franklin Inst 2017;354 (1):160–83.
- [51] Zouari F. Neural network based adaptive backstepping dynamic surface control of drug dosage regimens in cancer treatment. Neurocomputing 2019;366:248–63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87deaa6b-f7b7-4391-9c89-b1d98ecf0a1e