PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Satellite Orbit Determination using Quantum Correlation Technology

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After the presentation of second-order correlation ranging principles with quantum entanglement, the concept of quantum measurement is introduced to dynamic satellite precise orbit determination. Based on the application of traditional orbit determination models for correcting the systematic errors within the satellite, corresponding models for quantum orbit determination (QOD) are established. This paper experiments on QOD with the BeiDou Navigation Satellite System (BDS) by first simulating quantum observations of 1 day arc-length. Then the satellite orbits are resolved and compared with the reference precise ephemerides. Subsequently, some related factors influencing the accuracy of QOD are discussed. Furthermore, the accuracy for GEO, IGSO and MEO satellites increase about 20, 30 and 10 times, respectively, compared with the results from the resolution by measured data. Therefore, it can be expected that quantum technology may also bring delightful surprises to satellite orbit determination as have already emerged in other fields.
Czasopismo
Rocznik
Strony
233--241
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China
autor
  • Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China
autor
  • Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China
autor
  • Research Institute of Surveying and Mapping, Xi’an, China
Bibliografia
  • 1. Boehm J, Niell A et al (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):1–4
  • 2. Combrinck L (2010) Satellite laser ranging. In sciences of Geodesy-I. Springer, Berlin, pp 301–338
  • 3. D’Ariano GM, Lo PP et al (2001) Using entanglement improves the precision of quantum measurements. Phys Rev Lett 87(27 Pt 1):270404
  • 4. Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review, American Geophysical Union
  • 5. Giovannetti V, Lloyd S et al (2001) Quantum-enhanced positioning and clock synchronization. Nature 412(6845):417
  • 6. Giovannetti V, Lloyd S et al (2002) Positioning and clock synchronization through entanglement. Phys Rev A 65(2):130–132
  • 7. Glauber RJ (1997) The quantum theory of optical coherence. Phys Rev 130(6):2529–2539
  • 8. Hong CK, Ou ZY et al (1987) Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 59(18):2044
  • 9. Iorio L (2001) Satellite laser ranging and general relativity. Gen Relativ Gravit 43(12):3243–3245
  • 10. Jiao W, Ding Q et al (2011) Monitoring and assessment of GNSS open services. Sci Sin 64(S1):S19–S29
  • 11. Lemoine FG, Smith DE et al (1997) The development of the NASA GSFC and NIMA joint geopotential model. Springer, Berlin
  • 12. McCarthy DD and Petit G (2003) IERS Technical Note No. 32. IERS Conventions: 33-56
  • 13. Mendes VB, Prates G et al (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):51–53
  • 14. Montenbruck O, van Helleputte T et al (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271
  • 15. Montenbruck O, Steigenberger P et al (2013) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Espace 9(1):42–49
  • 16. Ozawa M (2001) Position measuring interactions and the Heisenberg uncertainty principle. Phys Lett A 299(1):1–7
  • 17. Pearlman MR, Degnan JJ et al (2002) The international laser ranging service. Adv Space Res 30(2):135–143
  • 18. Schutz BE, Tapley BD et al (2013) Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys Res Lett 21(19):2179–2182
  • 19. Shen Y, Xu L et al (2015) Relative orbit determination for satellite formation flying based on quantum ranging. Adv Space Res 56(4):680–692
  • 20. Springer TA, Beutler G et al (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62
  • 21. Uhlemann M, Gendt G et al (2015) GFZ Global Multi-GNSS network and data processing results. Springer, Berlin
  • 22. Valencia A, Scarcelli G et al (2004) Distant clock synchronization using entangled photon pairs. Appl Phys Lett 85(13):2655–2657
  • 23. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1(1):47–56
  • 24. Wong B (2014) Wuantum entanglement. Quantum Inform 81(2):865–942
  • 25. Wu SC, Yunck TP et al (1991) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dyn 14(1):2143–2153
  • 26. XianPin Q (2009) Research on Precision Orbit Determination Theory and Method of Low Earth Orbiter Based on GPS Technique, Zhengzhou Institute of Surveying and Mapping. D
  • 27. Xiao JJ, Fang C et al (2013) Distance ranging based on quantum entanglement. Chin Phys Lett 30(10):100
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87dd9d27-e057-4eff-86cd-c599a3f9129f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.