PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, efective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defned tolerances. Also, when we optimize one parameter, other two parameters are fxed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inver sion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and feld data application confrm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously.
Czasopismo
Rocznik
Strony
459--481
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • State Key Laboratory of Nuclear Resources and Environment, School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
autor
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
autor
  • State Key Laboratory of Nuclear Resources and Environment, School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
autor
  • State Key Laboratory of Nuclear Resources and Environment, School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
  • State Key Laboratory of Nuclear Resources and Environment, School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
Bibliografia
  • 1. Aharon M, Elad M, Bruckstein AM (2006) The K-SVD: An algorithm for designing of evercomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
  • 2. Alaei N, Kahoo AR, Rouhani AK, Soleimani M (2018) Seismic resolution enhancement using scale transform in the time-frequency domain. Geophysics 83(6):V305–V314
  • 3. Bickel SH, Natarajan RR (1985) Plane-wave Q deconvolution. Geophysics 50(9):1426–1439
  • 4. Chai X, Wang S, Yuan S, Zhao J, Sun L, Wei X (2014) Sparse reflectivity inversion for nonstationary seismic data. Geophysics 79(3):V93–V105
  • 5. Chai X, Wang S, Wei J, Li J, Yin H (2016) Reflectivity inversion for attenuated seismic data: physical modeling and field data experiments. Geophysics 81(1):T11–T24
  • 6. Chen S, Wei Q, Liu L, Li XY (2018) Data-driven attenuation compensation via a shaping regularization scheme. IEEE Geosci Remote Sens Lett 15(11):1667–1671
  • 7. Chen Z, Wang Y, Chen X, Li J (2013) High-resolution seismic processing by Gabor deconvolution. J Geophys Eng 10(6):1–10
  • 8. Cheng L, Wang S, Li S, Ji Y (2020) Multi-trace nonstationary sparse inversion with structural constraints. Acta Geophys 68(3):675–685
  • 9. Craven P, Wahba G (1978) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. NUMER MATH 31(4):377–403
  • 10. Daubechies I (1992) Orthogonal bases of compactly supported wavelets Ten Lectures on Wavelets, 2nd edn. SIAM, Pennsylvania, pp 161–213
  • 11. Engelhard L (1996) Determination of seismic-wave attenuation by complex trace analysis. Geophys J Int 125(2):608–622
  • 12. Foster M (1975) Transmission effects in the continuous one-dimensional seismic model. Geophys J R Astr Soc 42(2):519–527
  • 13. Futterman WI (1962) Dispersive body waves. J Geophys Res 67(13):5279–5291
  • 14. Gholami A, Siahkoohi HR (2010) Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints. Geophys J Int 180(2):871–882
  • 15. Gholami A (2016) A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery. Geophysics 81(5):V357–V364
  • 16. Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imag Sci 2(2):323–343
  • 17. Hamid H, Pidlisecky A (2015) Multitrace impedance inversion with lateral constraints. Geophysics 80(6):M101–M111
  • 18. Hansen PC, O’Leary D (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503
  • 19. Hao Y, Huang H, Gao J, Zhang S (2019) Inversion-based time-domain inverse Q-filtering for seismic resolution enhancement. IEEE Geosci Remote Sens Lett 16(12):1934–1938
  • 20. Hao Y, Huang H, Luo Y, Gao J, Yuan S (2018) Nonstationary acoustic-impedance inversion algorithm via a novel equivalent Q-value estimation scheme and sparse regularizations. Geophysics 83(6):R681–R698
  • 21. Hao Y, Wen X, Zhang B, He Z, Zhang R, Zhang J (2016) Q estimation of seismic data using the generalized S-transform. J Appl Geophys 135:122–134
  • 22. Kim Y, Cho Y, Shin C (2013) Estimated source wavelet-incorporated reverse-time migration with a virtual source imaging condition. Geophys Prospect 61(s1):317–333
  • 23. Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84:4737–4748
  • 24. Kolsky H (1956) The propagation of stress pulses in viscoelastic solids. Phil Mag 1(8):693–710
  • 25. Li C, Liu X (2015) A new method for interval Q-factor inversion from seismic reflection data. Geophysics 80(6):R361–R373
  • 26. Lindseth R (1979) Synthetic sonic logs: A process for stratigraphic interpretation. Geophysics 44(1):3–26
  • 27. Ma M, Wang S, Yuan S, Gao J, Li S (2018) Multichannel block sparse Bayesian learning reflectivity inversion with lp-norm criterion-based Q estimation. J Appl Geophys 159:434–445
  • 28. Ma X (2001) A constrained global inversion method using an overparameterized scheme: application to poststack seismic data. Geophysics 66(2):613–626
  • 29. Ma X, Li G, Li H, Li J, Fan X (2020) Stable absorption compensation with lateral constraint. Acta Geophys. https://doi.org/10.1007/s11600-020-00453-w
  • 30. Margrave GF, Lamoureux MP, Henley DC (2011) Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics 76(3):W15–W30
  • 31. Quan Y, Harris JM (1997) Seismic attenuation tomography using the frequency shift method. Geophysics 62(3):895–905
  • 32. Stark PB, Parker RL (1995) Bounded-variable least-squares: an algorithm and applications. Comput Stat 10:129–141
  • 33. Van der Baan M (2008) Time-varying wavelet estimation and deconvolution by kurtosis maximization. Geophysics 73(2):V11–V18
  • 34. Velis DR (2008) Stochastic sparse-spike deconvolution. Geophysics 73(1):R1–R9
  • 35. Walker C, Ulrych TJ (1983) Autoregressive recovery of the acoustic impedance. Geophysics 48(10):1338–1350
  • 36. Wang S, Li XY, Qian Z, Di B, Wei J (2007) Physical modelling studies of 3-D P-wave seismic for fracture detection. Geophys J Int 168(2):745–756
  • 37. Wang Y (2002) A stable and efficient approach of inverse Q filtering. Geophysics 67(2):657–663
  • 38. Wang Y (2006) Inverse Q-filter for seismic resolution enhancement. Geophysics 71(3):V51–V60
  • 39. Wang Y (2015) Generalized seismic wavelets. Geophys J Int 203(2):1172–1178
  • 40. Wang Y (2017) Seismic wavelet estimation Seismic inversion: theory and applications, 1st edn. Blackwell, London, pp 99–103
  • 41. Wang Y, Ma X, Zhou H, Chen Y (2018) L1–2 minimization for exact and stable seismic attenuation compensation. Geophys J Int 213(3):1629–1646
  • 42. Wuenschel PC (1965) Dispersive body waves: an experimental study. Geophysics 30(4):539–551
  • 43. Yu Y, Wang S, Yuan S, Qi P (2011) Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation. Appl Geophys 8(1):36–47
  • 44. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164
  • 45. Yuan S, Wang S, Ma M, Ji Y, Deng L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote 55(11):6182–6194
  • 46. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212
  • 47. Zhang G, Wang X, He Z (2015) A stable and self-adaptive approach for inverse Q-filter. J Appl Geophys 116:236–246
  • 48. Zhang R, Castagna J (2011) Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76(6):R147–R158
  • 49. Zhang R, Sen MK, Srinivasan S (2013) A prestack basis pursuit seismic inversion. Geophysics 78(1):R1–R11
  • 50. Zhou H, Tian Y, Ye Y (2014) Dynamic deconvolution of seismic data based on generalized S-transform. J Appl Geophys 108:1–11
  • 51. Zhou H, Wang C, Marfurt K, Jiang Y, Bi J (2016) Enhancing the resolution of non-stationary seismic data using improved time–frequency spectral modeling. Geophys J Int 205(1):203–219
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87dceeab-98dd-46ac-bb5a-335070538e5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.