Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Assessment of the residual stress-strain state (SSS) at MIG welding of aluminium alloys structures is relevant, because of the need to predict formation of residual stresses and strains, which may lead to lowering of fatigue strength of such a structure. Therefore, the research is devoted to determination of the influence of the mode of pulse-arc (MIG) welding of 1561 aluminium alloy of Al-Mg-Mn system (4 mm thickness) on the thermal cycle of the process and prediction of the influence of rigid restraint of the welded specimens in the assembly-welding fixture on the residual SSS of butt and tee welded joints. For this purpose, a finite element model of calculation of the temperature fields and SSS was created on the base of the conduced technological studies, which ensured up to 10% accuracy, that is an acceptable result for technological calculations. This model was used to determine the longitudinal and transverse tensile stresses and displacements, equivalent strains and stresses, out-of-plane displacements of the welded joint of Al-Mg-Mn aluminium alloy. It was found that rigid restraint of the specimens leads to formation of maximal equivalent stresses at MIG welding: for the butt joint - up to 190 MPa, forming in the points of transition from the weld to the base metal on the face surface; for the tee joint - ~250-260 MPa, forming in the weld area in the flange. Out-of-plane displacement after unfastening of the welded specimens from the assembly-welding fixture was equal to: for butt joint – up to 0.1 mm; for tee joint – up to formation of a plastic zone in the flange ~1.7 times larger than in the web, and out-of-plane bending of the web by 1.31 mm.
Wydawca
Rocznik
Tom
Strony
311--328
Opis fizyczny
Bibliogr. 53 poz., fig., tab.
Twórcy
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, Kazymyr Malevych Str., 11, 03150 Kyiv, Ukraine
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, Kazymyr Malevych Str., 11, 03150 Kyiv, Ukraine
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, Kazymyr Malevych Str., 11, 03150 Kyiv, Ukraine
autor
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy Ave, 03056 Kyiv, Ukraine
autor
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy Ave, 03056 Kyiv, Ukraine
autor
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy Ave, 03056 Kyiv, Ukraine
Bibliografia
- 1. Li C., Fan D., Yu X., Huang J. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing. *Trans. Nonferrous Met. Soc. China*, 2019; 29: 692−700. https://doi.org/10.1016/S1003-6326(19)64979-4.
- 2. Jing H., Yu Shi, Gang Zh., Volodymyr K., Wang-Yun Le. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation. *J. Manufacturing Processes*, 2022; 83: 49‒59. http://dx.doi.org/10.1016/j.jmapro.2022.08.031.
- 3. Korzhyk V., Khaskin V., Grynyuk A., Ganushchak O., Peleshenko S., Konoreva O., Demianov O., Shcheretskiy V., Fialko N. Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium. *Eastern-European Journal of Enterprise Technologies*, 2021; 4, 12(112): 6–17. https://doi.org/10.15587/1729-4061.2021.238634.
- 4. Kvasnytskyi V., Korzhyk V., Kvasnytskyi V., Mialnitsa H., Dong C., Pryadko T., Matviienko M., Buturlia Y. Designing brazing filler metal for heat-resistant alloys based on NI3AL intermetallide. *Eastern-European Journal of Enterprise Technologies*, 2020; 6(12): 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
- 5. Fialko, N.M., Prokopov, V.G., Meranova, N.O., Borisov Yu.S., Korzhik, V.N., Sherenkovskaya, G.P. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. *Fizika i Khimiya Obrabotki Materialov*, 1994; 2: 59–67.
- 6. Fialko, N.M., Prokopov, V.G., Meranova, N.O., Borisov Yu., Korzhik, V.N., Sherenkovskaya, G.P. Thermal physics of gasothermal coatings formation processes. State of investigations. *Fizika i Khimiya Obrabotki Materialov*, 1993; 4: 83–93.
- 7. Krikent I.V., Krivtsun I.V., Demchenko V.F. Modelling of processes of heat-, mass- and electric transfer in column and anode region of arc with refractory cathode. *The Paton Welding Journal*, 2012; 3: 2–6. http://dspace.nbuv.gov.ua/handle/123456789/101111
- 8. Korzhik V.N. Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. III. Transformations in the amorphous layer during the growth process of the coating. *Soviet Powder Metallurgy and Metal Ceramics*, 1992; 31(11): 943‒948. https://doi.org/10.1007/BF00797621
- 9. Prokopov V.G., Fialko N.M., Sherenkovskaya G.P., Murashov A.P., Korzhik V.N. Effect of the coating porosity on the processes of heat transfer under gas-thermal atomization. *Powder Metallurgy and Metal Ceramics*, 1993; 32: 118–121. https://doi.org/10.1007/BF00560034
- 10. Lindgren L.-E. Finite element modeling and simulation of welding part 1: increased complexity. *Journal of Thermal Stresses*, 2001; 24(2): 141–192. https://doi.org/10.1080/01495730150500442.
- 11. Salvati E., Everaerts J., Kageyama K., Korsunsky A.M. Transverse fatigue behaviour and residual stress analyses of double sided FSW aluminium alloy joints. Special Issue: Advances in Fatigue and Fracture ‐ Celebrating the 40th Anniversary of FFEMS, 2019; 42(9): 1980–1990. https://doi.org/10.1111/ffe.13068.
- 12. Repin S.I., Sauter S.A. Accuracy of Mathematical Models. *Jahresbericht der Deutschen Mathematische-Vereinigung*, 2020; 122: 269–274. https://doi.org/10.1365/s13291-020-00222-0.
- 13. Buhaienko I., Kyrylenko M., Mylenkyi V. Mathematical modeling of the technological process and synthesis of the amidation control system. *Proceedings of the NTUU “Igor Sikorsky KPI” Series Chemical engineering ecology and resource saving*, 2022; 1(21): 55–61. https://doi.org/10.20535/2617-9741.1.2022.254159.
- 14. Bajuri M. R., Siri Z., Abdullah M. N. S. Mathematical modeling research output impacting new technological development: An axiomatization to build novelty. *Axioms*, 2022; 11(6): 264. https://doi.org/10.3390/axioms11060264.
- 15. Anca A., Cardona A., Risso J., Fachinotti V. D. Finite element modeling of welding processes. *Applied Mathematical Modelling*, 2011; 35(2): 688–707. https://doi.org/10.1016/j.apm.2010.07.026.
- 16. Kik T. Numerical analysis of MIG welding of butt joints in aluminium allo. *Institute of Welding Bulletin*, 2014; 3: 37–45.
- 17. Livieri P., Tovo R. Optimization of welded joints under fatigue loadings. *Metals*, 2024; 14(6): 613. https://doi.org/10.3390/met14060613.
- 18. Chandramohan D. L., Roy K., Taheri H., Karpenko M., Fang Z., Lim J. B. P. A State of the art review of fillet welded joints. *Materials*, 2022; 24: 8743. https://doi.org/10.3390/ma15248743.
- 19. James M., Hughes D., Hattingh D.G., Mills G., Webster P.J. Residual stress and strain in MIG butt welds in 5083-H321 aluminium: As-welded and fatigue cycled. *International Journal of Fatigue*, 2009; 31(1): 28–40. https://doi.org/10.1016/j.ijfatigue.2008.04.010.
- 20. Ma M., Lai R., Qin J., Wang B., Liu H., Yi D. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations. *International Journal of Fatigue*, 2021; 144: 106046. https://doi.org/10.1016/j.ijfatigue.2020.106046.
- 21. Khoshroyan A., Darvazi A. R. Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint. *Transactions of Nonferrous Metals Society of China*, 2020; 30(1): 76–89. https://doi.org/10.1016/S1003-6326(19)65181-2.
- 22. Chaurasia P.K., Pandey C., Giri A., Saini N., Mahapatra M.M. A comparative study of residual stress and mechanical properties for FSW and TIG weld on structural steel. *Arch. Metall. Mater.*, 2018; 63(2): 1019–1029. https://doi.org/10.24425/122437.
- 23. Song G., Wang Z., Fan X., Liu L. Research Progress of Aluminum Alloy Welding/Plastic Deformation Composite Forming Technology in Achieving High-Strength Joints. *Materials (Basel)*, 2023; 16(24): 7672. https://doi.org/10.3390/ma16247672.
- 24. Zhang T., Chen J., Gong H., Li H. Study on Residual Stresses of 2219 Aluminum Alloy with TIG Welding and Its Reduction by Shot Peening. *Metals*, 2023; 13(9), 1581. https://doi.org/10.3390/met13091581.
- 25. Wang J., Chen X., Yang L., Zhang G. Effect of preheat & post-weld heat treatment on the microstructure and mechanical properties of 6061-T6 aluminum alloy welded sheets. *Materials Science and Engineering: A*, 2022; 841: 143081. https://doi.org/10.1016/j.msea.2022.143081.
- 26. Macek W., Sampath D., Pejkowski Ł., Żak K. A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA). *Engineering Failure Analysis*, 2022; 134: 106048. https://doi.org/10.1016/j.engfailanal.2022.106048.
- 27. Macek W., Tomczyk A., Branco R., Dobrzyński M., Seweryn A. Fractographical quantitative analysis of EN-AW 2024 aluminum alloy after creep pre-strain and LCF loading. *Engineering Fracture Mechanics*, 2023; 282: 109182. https://doi.org/10.1016/j.engfracmech.2023.109182.
- 28. Nie F., Dong H., Chen S., Li P., Wang L., Zhao Z., Li X., Zhang H. Pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. *Journal of Materials Science & Technology*, 2018; 34(3): 551–560. https://doi.org/10.1016/j.jmst.2016.11.004.
- 29. Liu A., Tang X., Lu F. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding. *Materials & Design*, 2013; 50: 149–155. https://doi.org/10.1016/j.matdes.2013.02.087.
- 30. Cao S.-F., Chen T.-P., Yi J., Guo P., Li L. Simulation of temperature, stress and deformation during double pulsed MIG welding of aluminum alloy. *The Chinese Journal of Nonferrous Metals*, 2014; 24(7): 1685–1692. https://doi.org/10.19476/j.ysxb.1004.0609.2014.07.001.
- 31. Xu S., Chen J., Shen W., Hou R., Wu Y. Fatigue strength evaluation of 5059 aluminum alloy welded joints Considering welding deformation and residual stress. *International Journal of Fatigue*, 2022; 162: 106988. https://doi.org/10.1016/j.ijfatigue.2022.106988.
- 32. Labur T.M. Welded structures from aluminium alloys. *The Paton Welding Journal*, 2020; 3: 25–33. https://doi.org/10.37434/tpwj2020.03.04.
- 33. Chen B.-Q., Liu K., Xu S. Recent advances in aluminum welding for marine structures. *Journal of Marine Science and Engineering*, 2024; 12(9): 1539. https://doi.org/10.3390/jmse12091539.
- 34. Kuchuk-Yatsenko S.I., Hushchyn K.V., Ziakhor I.V., Samotryasov S.M., Zavertannyi M.S. and Levchuk A.M. Structure and mechanical properties of 2219-T87 aluminium alloy joints produced by flash butt welding. *The Paton Welding Journal*, 2021; 8: 27–32. https://doi.org/10.37434/tpwj2021.08.06.
- 35. Sun Y. The use of aluminum alloys in structures: Review and outlook. *Structures*, 2023; 57: 105290. https://doi.org/10.1016/j.istruc.2023.105290.
- 36. Vander Voort G.F. *Metallography: Principles and Practice* – ASM International, Materials Park, OH, 1999; 752.
- 37. Gorowitz B., Saia R.J., Balch E.W. Chapter 4 – Methods of Metal Patterning and Etching, Editor(s): Einspruch N. G., Cohen S. S., Gildenblat G. Sh., *VLSI Electronics Microstructure Science*, Elsevier, 1987; 15: 159–219. https://doi.org/10.1016/B978-0-12-234115-1.50008-8.
- 38. Gu Y., Zhang W., Xu Y., Shi Y., Volodymyr K. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. *npj Materials Degradation*, 2022; 6(1): 90. http://dx.doi.org/10.1038/s41529-022-00300-x.
- 39. Youwei X., Xuqian H., Yu S., Wenzhu Z., Yufen G., Changgen F., Volodymyr K. Correlation between the microstructure and corrosion behaviour of copper/316 L stainless-steel dissimilar-metal welded joints. *Corrosion Sci.*, 2021; 191: 109729. https://doi.org/10.1016/j.corsci.2021.109729.
- 40. Skorokhod A.Z., Sviridova I.S., Korzhik V.N. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. *Mekhanika Kompozitnykh Materialov*, 1994; 30(4): 455–463.
- 41. Fialko N., Dinzhos R., Sherenkovskii N., Meranova S., Aloshko D., Izvorska Korzhyk V., Lazarenko M., Mankus I., Nedbaievska L. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. *Eastern-European Journal of Enterprise Technologies*, 2021; 6(12(114)): 6–12. http://dx.doi.org/10.15587/1729-4061.2021.245274.
- 42. Fialko N., Dinzhos R., Sherenkovskii J., Meranova N., Korzhyk V., Lazarenko M., Koseva N. Establishing Patterns In The Effect Of Temperature Regime When Manufacturing Nanocomposites On Their Heat-Conducting Properties. *Eastern-European Journal of Enterprise Technologies*, 2021; 4(5(112)): 21–26. http://dx.doi.org/10.15587/1729-4061.2021.236915.
- 43. Colegrove P., Ikeagu C., Thistlethwaite A., Williams S. Welding process impact on residual stress and distortion. *Science and Technology of Welding & Joining*, 2009; 14(8): 717–725. https://doi.org/10.1179/136217109X406938.
- 44. Colegrove P., Ikeagu C., Thistlethwaite A., Williams S., Nagy T., Suder W., Steuwer A., Pirling T. Welding process impact on residual stress and distortion. *Science and Technology of Welding and Joining*, 2013; 14, 2009(8): 717–725. https://doi.org/10.1179/136217109X406938.
- 45. Sun J., Nitschke-Pagel T., Dilger K. Generation and distribution mechanism of welding-induced residual stresses. *Journal of Materials Research and Technology*, 2023; 27: 3936–3954. https://doi.org/10.1016/j.jmrt.2023.10.252.
- 46. Zhu S., Wang Q. W., Wang X. M., Han G. F. Analysis on Thermal Efficiency and Softening Behavior of MIG Welding with Longitud inal Magnetic Field. *Materials*, 2022; 15(7): 2325. https://doi.org/10.3390/ma15072325.
- 47. Tsaryk B.R., Muzhichenko O.F., Makhnenko O.V. Mathematical model of determination of residual stresses and strains in friction stir welding of aluminium alloy. *The Paton Welding Journal*, 2022; 9: 33–40. https://doi.org/10.37434/tpwj2022.09.06.
- 48. Tsaryk B.R., Makhnenko O.V. Mathematical modelling of distortions at welding of large vessels of aluminium alloy. *The Paton Welding Journal*, 2024; 8: 18–25. https://doi.org/10.37434/tpwj2024.08.03.
- 49. Makhnenko O.V., Muzhichenko A.F. Mathematical modelling of thermal straightening of cylindrical shells and shafts with distortions along their longitudinal axis. *The Paton Welding Journal*, 2007; 9: 17–22.
- 50. Zienkiewicz O.C., Taylor R.L., Fox D.D. *The Finite Element Method for Solid and Structural Mechanics*, 7th Edition, Elsevier, 2014; 657.
- 51. Goldak J.A., Akhlaghi M. *Computational welding mechanics*. – O.: USA, Springer, 2005; 325. https://doi.org/10.1007/b101137.
- 52. Zhernosekov A., Fedorchuk V., Novomlynets O. Regulation of current pulse parameters during MIG welding of aluminum alloys. *Technical Sciences and Technologies*, 2022; 2(28): 31–37. https://doi.org/10.25140/2411-5363-2022-2(28)-31-37.
- 53. Wang Y.-Z., Li G.-Q., Wang Y.-B., Lyu Y.-F. Simplified method to identify full von Mises stress-strain curve of structural metals. *Journal of Constructional Steel Research*, 2021; 181: 106624. https://doi.org/10.1016/j.jcsr.2021.10662.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87dbae3f-b986-4fae-8c2b-14538c7d0b4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.