PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brain tumor is one of the harsh diseases among human community and is usually diagnosed with medical imaging procedures. Computed-Tomography (CT) and Magnetic-Resonance- Image (MRI) are the regularly used non-invasive methods to acquire brain abnormalities for medical study. Due to its importance, a significant quantity of image assessment and decision-making procedures exist in literature. This article proposes a two-stage image assessment tool to examine brain MR images acquired using the Flair and DW modalities. The combination of the Social-Group-Optimization (SGO) and Shannon's-Entropy (SE) supported multi-thresholding is implemented to pre-processing the input images. The image post-processing includes several procedures, such as Active Contour (AC), Watershed and region-growing segmentation, to extract the tumor section. Finally, a classifier system is implemented using ANFIS to categorize the tumor under analysis into benign and malignant. Experimental investigation was executed using benchmark datasets, like ISLES and BRATS, and also clinical MR images obtained with Flair/DW modality. The outcome of this study confirms that AC offers enhanced results compared with other segmentation.
Twórcy
autor
  • Department of Information Technology, Techno India College of Technology, Kolkata 700156, West Bengal, India
  • Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai Tamilnadu, India
autor
  • College of Information and Engineering, Wenzhou Medical University, Wenzhou China
  • Instituto de Ciênciae Inovaçãoem Engenharia Mecânicae Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
  • Dunarea de Jos, University of Galati, Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, 47 Galati, Romania
  • Managing Director and Radiologist, Proscan Diagnostics Private Limited, Chennai Tamilnadu, India
autor
  • Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, Texas USA
  • Department of Instrumentation Engineering, MIT Campus, Anna University, Chennai Tamilnadu, India
autor
  • Gleneagles Global Health City, Perumbakkam, Chennai Tamilnadu, India
Bibliografia
  • [1] Dey N, Ashour AS, Beagum S, Pistola DS, Gospodinov M, Gospodinova EP, et al. Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising. J Imag 2015;1(1):60–84. http://dx.doi.org/10.3390/jimaging1010060.
  • [2] Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S. Entropy based segmentation of tumour from brain MR images—a study with teaching learning based optimization. Pattern Recogn Lett 2017;94:87–94. http://dx.doi.org/10.1016/j.patrec.2017.05.028.
  • [3] Rajinikanth V, Fernandes SL, Bhushan B, Sunder NR. Segmentation and analysis of brain tumour using Tsallis entropy and regularised level set. LNEE 2018;434:313–21. http://dx.doi.org/10.1007/978-981-10-4280-5_33.
  • [4] Thanaraj P, Parvathavarthini B. Multichannel interictal spike activity detection using time–frequency entropy measure. Australas Phys Eng S 2017;40(2):413–25. http://dx.doi.org/10.1007/s13246-017-0550-6.
  • [5] Kanmani P, Marikkannu P. MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 2018;42(4):62. http://dx.doi.org/10.1007/s10916-018-0915-8.
  • [6] Nilesh BB, Arun KR, Har PT. Image analysis for MRI based brain tumour detection and feature extraction using biologically inspired BWT and SVM. Biomed Image Regis 2017;2017(Article ID 9749108):12. http://dx.doi.org/10.1155/2017/9749108.
  • [7] Marzena B, Khalid S. Segmentation of MRI brain images for automatic detection and precise localization of tumour. AISC 2011;102:333–41. http://dx.doi.org/10.1007/978-3-642-23154-4_37.
  • [8] Rajinikanth V, Satapathy SC. Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab J Sci Eng 2018;43(8):4365–78. http://dx.doi.org/10.1007/s13369-017-3053-6.
  • [9] Bhattacharyya D, Kim TH. Brain tumour detection using MRI image analysis. CCIS 2011;151:307–14. http://dx.doi.org/10.1007/978-3-642-20998-7_38.
  • [10] Rajinikanth V, Raja NSM, Kamalanand K. Firefly algorithm assisted segmentation of tumour from brain MRI using Tsallis function and Markov random field. Control Eng Appl Inf 2017;19(3):97–106.
  • [11] Isin A, Direkoglu C, Sah M. Review of MRI-based brain tumour image segmentation using deep learning methods. Procedia Computer Sci 2016;102:317–24. http://dx.doi.org/10.1016/j.procs.2016.09.407.
  • [12] Usman K, Rajpoot K. Brain tumour classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Appl 2017;20(3):871–81. http://dx.doi.org/10.1007/s10044-017-0597-8.
  • [13] Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One 2015;10(12):e0145118. http://dx.doi.org/10.1371/journal.pone.0145118.
  • [14] Maier. et al. ISLES 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 2017;35:250–69. http://dx.doi.org/10.1016/j.media.2016.07.009.
  • [15] ISLES 2015 (www.isles-challenge.org).
  • [16] Menze. et al. The multimodal brain tumour image segmentation benchmark (BRATS).. IEEE T Med Imag 2015;34(10):1993–2024. http://dx.doi.org/10.1109/TMI.2014.2377694.
  • [17] Brain Tumour Database (BraTS-MICCAI), http://hal.inria.fr/ hal-00935640.
  • [18] Jiang. et al. 3D brain tumour segmentation in multimodal MR images based on learning population-and patient-specific feature sets. Comput Med Imaging Graph 2013;37(7- 8):512–21. http://dx.doi.org/10.1016/j.compmedimag.2013.05.007.
  • [19] Song T, Angelini E, Mensh B, Laine A. Comparison study of clinical 3D MRI brain segmentation evaluation. Conf Proc IEEE Eng Med Biol Soc 2004;3:1671–4. http://dx.doi.org/10.1109/IEMBS.2004.1403504.
  • [20] Maria. et al. Registration of 3D fetal neurosonography and MRI. Med Image Anal 2013;17(8):1137–50. http://dx.doi.org/10.1016/j.media.2013.07.004.
  • [21] Roopini IT, Vasanthi M, Rajinikanth V, Rekha M, Sangeetha M. Segmentation of tumour from brain MRI using fuzzy entropy and distance regularised level set. LNEE 2018;490:297–304. http://dx.doi.org/10.1007/978-981-10-8354-9_27.
  • [22] Rajinikanth V, Satapathy SC, Dey N, Vijayarajan R. DWT-PCA Image fusion technique to improve segmentation accuracy in brain tumour analysis. LNEE 2018;471:453–62. http://dx.doi.org/10.1007/978-981-10-7329-8_46.
  • [23] Rajinikanth V, Dey N, Satapathy SC, Ashour AS. An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Future Gener Comput Syst 2018;85:160–72. http://dx.doi.org/10.1016/j.future.2018.03.025.
  • [24] Savareh BA, Emani H, Hajiabadi M, Ghafoori M. Emergence of convolutional neural network in future medicine: why and how. A review on brain tumour segmentation. P J Med Phy Engg 2018;24(1). http://dx.doi.org/10.2478/pjmpe-2018-0007.
  • [25] Ventura SR, Freitas DR, Tavares JMRS. Application of MRI and biomedical engineering in speech production study. Comput Methods Biomech Biomed Engin 2009;12(6):671–81. http://dx.doi.org/10.1080/10255840902865633.
  • [26] Maier O, Wilms M, Gablentz VDJ, Krämer UM, Münte TF, Handels H. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 2015;240:89–100. http://dx.doi.org/10.1016/j.jneumeth.2014.11.011.
  • [27] Mitra. et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 2014;98:324–35. http://dx.doi.org/10.1016/j.neuroimage.2014.04.056.
  • [28] Tian Z, Dey N, Ashour AS, McCauley P, Shi F. Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput Appl 2017;1–16. http://dx.doi.org/10.1007/s00521-017-2955-2.
  • [29] Bibicu D, Moraru L, Biswas A. Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 2013;26(1):119–28. http://dx.doi.org/10.1007/s10278-012-9475-5.
  • [30] Punga MV, Gaurav R, Moraru L. Level set method coupled with energy image features for brain MR image segmentation. Biomed Tech (Berl) 2014;59(3):219–29. http://dx.doi.org/10.1515/bmt-2013-0111.
  • [31] Moldovanu S, Moraru L, Biswas A. Robust skull stripping segmentation based on irrational mask for magnetic resonance brain images. J Digit Imaging 2015;28(6):738–47. http://dx.doi.org/10.1007/s10278-015-9776-6.
  • [32] Moraru L, Moldovanu S, Dimitrievici LT, Dey N, Ashour AS. Texture anisotropy technique in brain degenerative diseases. Neural Comput Appl 2018;30(5):1667–77. http://dx.doi.org/10.1007/s00521-016-2777-7.
  • [33] Chaddad A, Tanougast C. Quantitative evaluation of robust skull stripping and tumour detection applied to axial MR images. Brain Inform 2016;3(1):53–61. http://dx.doi.org/10.1007/s40708-016-0033-7.
  • [34] Qian X, Wang J, Guo S, Li Q. An active contour model for medical image segmentation with application to brain CT image. Med Phys 2013;40(2):021911.
  • [35] Shriranjani D, Tebby SG, Satapathy SC, Dey N, Rajinikanth V. Kapur's entropy and active contour-based segmentation and analysis of retinal optic disc. LNEE 2018;490:287–95. http://dx.doi.org/10.1007/978-981-10-8354-9_26.
  • [36] Rajinikanth V, Raja NSM, Satapathy SC, Fernandes SL. Otsu's multi-thresholding and active contour snake model to segment dermoscopy images. J Med Imag Health In 2017;7(8):1837–40. http://dx.doi.org/10.1166/jmihi.2017.2265.
  • [37] Malek. et al. Seed point selection for seed-based region growing in segmenting microcalcifications. International Conference on Statistics in Science, Business, and Engineering (ICSSBE); 2012. http://dx.doi.org/10.1109/ICSSBE.2012.6396580.
  • [38] Hore S, Chakraborty S, Chatterjee S, Dey N, Ashour AS, Chung LV, et al. An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. I J Electrical Compu Engg (IJECE) 2016;6(6):2773–80. http://dx.doi.org/10.11591/ijece.v6i6.11801.
  • [39] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [40] Malladi R, Sethian A, Vemuri BC. Shape modeling with front propagation: a level set approach. IEEE T Pattern Anal Mac Int 1995;17(2):158–75. http://dx.doi.org/10.1109/34.368173.
  • [41] Vaishnavi G, Jeevananthan K, Begum SR, Kamalanand K. Geometrical analysis of schistosome egg images using distance regularized level set method for automated species identification. J Bioinformatics Intell Cont 2014;3:147–52. http://dx.doi.org/10.1166/jbic.2014.1080.
  • [42] Shree TDV, Revanth K, Raja NSM, Rajinikanth V. A hybrid image processing approach to examine abnormality in retinal optic disc. Procedia Compu Sci 2018;125:157–64. http://dx.doi.org/10.1016/j.procs.2017.12.022.
  • [43] Dey N, Rajinikanth V, Ashour AS, Tavares JMRS. Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 2018;10 (20):51. http://dx.doi.org/10.3390/sym10020051.
  • [44] Satapathy S, Naik A. Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intell Syst 2016;2(3):173–203.
  • [45] Naik A, Satapathy SC, Ashour AS, Dey N. Social group optimization for global optimization of multimodal functions and data clustering problems. Neural Comput Appl 2016;30(1):271–87. http://dx.doi.org/10.1007/s00521-016-2686-9.
  • [46] Kannappan PL. On Shannon's entropy, directed divergence and inaccuracy. Probab Theory Rel Fields 1972;22:95–100.
  • [47] Paul S, Bandyopadhyay B. A novel approach for image compression based on multi-level image thresholding using shannon entropy and differential evolution. Students' Technology Symposium (TechSym); 2014. pp. 56–61. http://dx.doi.org/10.1109/TechSym.2014.6807914.
  • [48] Roerdink JBTM, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 2001;41:187–228.
  • [49] Lu H, Kot AC, Shi YQ. Distance-reciprocal distortion measure for binary document images. IEEE Signal Process Letter 2004;11(2):228–31.
  • [50] Moghaddam RF, Cheriet M. A multi-scale framework for adaptive binarization of degraded document images. Pat Recognition 2010;43(6):2186–98.
  • [51] Beagum S, Dey N, Ashour AS, Sifaki-Pistolla D, Balas VE. Nonparametric de-noising filter optimization using structure-based microscopic image classification. Microsc Res Tech 2017;80(4):419–29. http://dx.doi.org/10.1002/jemt.22811.
  • [52] Roy P, Goswami S, Chakraborty S, Azar AT, Dey N. Image segmentation using rough set theory: a review. I J Rough Sets Data Analysis (IJRSDA) 2014;1(2):62–74. http://dx.doi.org/10.4018/ijrsda.2014070105.
  • [53] Oliveira RB, Papa JP, Pereira AS, Tavares JMRS. Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 2018;29(3):613–36. http://dx.doi.org/10.1007/s00521-016-2482-6.
  • [54] Tavares JMRS. Analysis of biomedical images based on automated methods of image registration. LNCS 2014;8887:21–30. http://dx.doi.org/10.1007/978-3-319-14249-4_3.
  • [55] Haralick RM, Shanmugam K, Dinstein I. Textural features of image classification. IEEE T Syst Man Cy 1973;SMC-3(6):610–21. http://dx.doi.org/10.1109/TSMC.1973.4309314.
  • [56] Soh L, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 1999;37(2):780–95. http://dx.doi.org/10.1109/36.752194.
  • [57] Clausi DA. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sensing 2002;28(1):45–62. http://dx.doi.org/10.5589/m02-004.
  • [58] Kamalanand K, Ramakrishnan S. Effect of gadolinium concentration on segmentation of vasculature in cardiopulmonary magnetic resonance angiograms. J Med Imag Health In 2015;5(1):147–51. http://dx.doi.org/10.1166/jmihi.2015.1370.
  • [59] Ma Z, Tavares JMRS. A review of the quantification and classification of pigmented skin lesions: from dedicated to hand-held devices. J Medi Syst 2015;39(11):177. http://dx.doi.org/10.1007/s10916-015-0354-8.
  • [60] Manickavasagam K, Sutha S, Kamalanand K. Development of systems for classification of different plasmodium species in thin blood smear microscopic images. J Adv Microscopy Res 2014;9(2):86–92. http://dx.doi.org/10.1166/jamr.2014.1194.
  • [61] Kamalanand K, Jawahar PM. Comparison of particle swarm and bacterial foraging optimization algorithms for therapy planning in HIV/AIDS patients. I J Biomathematics 2016;9 (2):1650024. http://dx.doi.org/10.1142/S1793524516500248.
  • [62] Paramasivam A, Kamalanand K. An approach based on information theory for selection of systems for efficient recording of electrogastrograms. LNNS 2018;24:463–71. http://dx.doi.org/10.1007/978-981-10-6890-4_45.
  • [63] Sathya DJ, Geetha K. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI. P J Med Phy Engg 2017;23(4):81–8. http://dx.doi.org/10.1515/pjmpe-2017-0014.
  • [64] Yang Z, Wang Y, Ouyang G. Adaptive Neuro-Fuzzy inference system for classification of background EEG signals from ESES patients and controls. Transfus Apher Sci 2014;2014(Article ID 140863):8. http://dx.doi.org/10.1155/2014/140863.
  • [65] Wang. et al. Image feature-based affective retrieval employing improved parameter and structure identification of adaptive neuro-fuzzy inference system. Neural Compu App 2016;1–16. http://dx.doi.org/10.1007/s00521-016-2512-4.
  • [66] Ahmed. et al. Effect of fuzzy partitioning in Crohn's disease classification: a neuro-fuzzy-based approach. MediBio Engg Compu 2017;55(1):101–15. http://dx.doi.org/10.1007/s11517-016-1508-7.
  • [67] Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31 (3):1116–28.
  • [68] ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php).
  • [69] https://proscans.in.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87da38a4-a102-4f21-9d0f-3bd07b13dc9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.