PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laminar flow past the bottom with obstacles – a suspension approximation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From Albert Einstein’s study (1905) it is known that suspension introduced to a fluid modifies its viscosity. We propose to describe the influence of obstacles on the Stokesian flow as a such modification. Hence, we treat the fluid flow through small obstacles as a flow with suspension. The flow is developing past the plane bottom under the gravity force. The spatial distribution of suspension concentration is treated as given, and is regarded as an approximation of different obstacles which modify the fluid flow and change its viscosity. The different densities of suspension are considered, beginning of small suspension concentration until 40%. The influence of suspension concentration on fluid viscosity is analyzed, and Brinkman’s formula as fitting best to experimental data is applied.
Rocznik
Strony
685--695
Opis fizyczny
Bibliogr. 76 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research PAS, IPPT PAN, 5B Pawińskiego St., 02-106 Warszawa, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, IGF PAN, 64 Księcia Janusza St., 01-452 Warszawa, Poland
Bibliografia
  • [1] S. Chandrasekhar, M. Kac, and R. Smoluchowski, Marian Smoluchowski – His Life and Scientific Work, ed. R.S. Ingarden, PWN, Warszawa, 1986.
  • [2] J.E. Bradyand and F. Senese, Chemistry: Matter and Its Changes, 4th edition, John Wiley & Sons, Hoboken, 2004.
  • [3] N.E. Kochin, I.A. Kibel’, and N.V. Roze, Theoretical Hydromechanics, Part 2, Fizmatgiz, Moskva 1963, (in Russian).
  • [4] A.E. Scheidegger, The Physics of Flow Through Porous Media, University of Toronto Press, Toronto, 1974.
  • [5] G.I. Barenblatt, V.M. Entov, and V.M Ryzhik, Theory of Fluid Flows Through Natural Rocks (Theory and Applications of Transport in Porous Media), Kluwer Academic Publishers, Dordrecht, 1990.
  • [6] V. Nikora, D. Goring, I. McEwan, and G. Griffiths, “Spatially averaged open-channel flow over rough bed”, J. Hydraulic Engineering 127 (2), 123–133 (2001).
  • [7] G. Szefer and M. Mikołajek, “Consolidation of a porous multilayered subsoil undergoing large deformation”, J. Theoretical and Applied Mechanics 36 (3), 759–773 (1998).
  • [8] M. Cieszko and J. Kubik, “Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid”, Transport in Porous Media 34 (1–3), 319–336 (1999).
  • [9] J. Kubik, M. Kaczmarek, and I. Murdoch, Modelling Coupled Phenomena in Saturated Porous Materials: Advanced Course, AMAS Centre of Excellence for Advanced Materials and Structures, Nat. Centre of Excellence for Porous Media, Warsaw, 2004.
  • [10] R. Drelich, M. Pakula, and M. Kaczmarek, “Identification of drag parameters of flow in high permeability materials by U-tube method”, Transport in Porous Media 101 (1), 69–79 (2014).
  • [11] A. Einstein, “A new determination of molecular dimensions”, Annalen der Physik 19, 289—306 (1906), (in German).
  • [12] H.A. Einstein, “The bed-load function for sediment transportation in open channel flows”, Technical Bulletin 1028, CD-ROM (1950).
  • [13] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987.
  • [14] G.B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid”, Proc. Royal Society A 102, 161–179 (1922).
  • [15] D.J. Jeffrey and A. Acrivos, “The rheological properties of suspensions of rigid particles”, American Institute of Chemical Engineers (A I Ch E) J. 22 (3), 417–432 (1976).
  • [16] Th. Lévy and E. Sánchez-Palencia, “Small concentration suspension of solid particles or viscous drops in a viscous fluid”, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 297 (3), 193–196 (1983), (in French).
  • [17] Th. Levy and E. Sanchez-Palencia, “Suspension of solid particles in a Newtonian fluid”, J. Non-Newtonian Fluid Mech. 13, 63–78 (1983).
  • [18] E. Sanchez-Palencia, “Einstein-like approximation for homogenization with small concentration. I-elliptic problems”, Nonlinear Analysis: Theory, Methods & Applications 9 (11) 1243–1254 (1985).
  • [19] N. Middleton, Rivers: a Very Short Introduction, Oxford University Press, New York, 2012.
  • [20] A.L. Brown, Freshwater Ecology, Heinimann Educational Books, London, 1987.
  • [21] J.D. Allan, Stream Ecology: Structure and Function of Running Waters, Chapman and Hall, London, 1995.
  • [22] S. Giller and B. Malmqvist, The Biology of Streams and Rivers, Oxford University Press, Oxford, 1998.
  • [23] N. Castree, A. Rogers, and D. Sherman, Questioning Geography: Fundamental Debates, Wiley-Blackwell, London, 2005.
  • [24] E. Angelier, Ecology of Streams and Rivers, Science Publishers, Enfield, 2003.
  • [25] C.W. Fetter, Contaminant Hydrogeology, Prentice Hall, New Jersey, 1999.
  • [26] M.J. Kennish, Ecology of Estuaries: Anthropogenic Effects, Marine Science Series, CRC Press, Boca Raton, 1992.
  • [27] R. Wachman, “Water becomes the new oil as world runs dry”, http://www.theguardian.com/business/2007/dec/09/water.climatechange (2007).
  • [28] D.F. Westlake, J. Kvĕt, and A. Szczepański, The Production Ecology of Wetlands, Cambridge University Press, Cambridge, 1998.
  • [29] K. Evangelos, “The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method”, Water Resources and Ocean Science 1 (1), 1–6 (2012).
  • [30] E. Kubrak, J. Kubrak, and P.M. Rowiński, “Influence of a method of evaluation of the curvature of flexible vegetation elements on vertical distributions of flow velocities”, Acta Geophysica 60 (4), 1098–1119 (2012).
  • [31] E. Kubrak, J. Kubrak, and P.M. Rowiński, “Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea canadensis)”, Acta Geophysica 61 (1), 194–210 (2013).
  • [32] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Springer Verlag, Berlin, 1980.
  • [33] W. Bielski, J.J. Telega, and R. Wojnar, “Nonstationary flow of a viscous fluid through a porous elastic medium: asymptotic analysis and two-scale convergence”, Mechanics Research Communications 26 (5), 619–628 (1999).
  • [34] W. Bielski, J.J. Telega, and R. Wojnar, “Macroscopic equations for nonstationary flow of Stokesian fluid through porous elastic skeleton”, Archive of Mechanics 51 (3–4), 243–274 (1999).
  • [35] W. Bielski, J.J. Telega, and R. Wojnar, “Nonstationary two-phase flow through porous medium”, Archive of Mechanics 53 (4–5), 333–366 (2001).
  • [36] J.J. Telega and W. Bielski, “Stochastic homogenization and macroscopic modelling of composites and flow through porous media”, Theoretical and Applied Mechanics 28–29, 337–378 (2002).
  • [37] J.J. Telega and W.R. Bielski, “Flows in random porous media: effective models”, Computers and Geotechnics 30 (4), 271–288 (2003).
  • [38] W. Bielski and R. Wojnar, “Homogenisation of flow through double scale porous medium”, in eds. A.A. Kilbas and S.V. Rogosin, Analytic Methods of Analysis and Differential Equations, pp. 27–44, AMADE Cambridge Scientific Publishers, Cambridge, 2008.
  • [39] J. Nevad and J.B. Keller, “Homogenization of rough boundaries and interfaces”, SIAM J. Appl. Math. 57 (6), 1660–1686 (1997).
  • [40] A.G. Belyaev, A.L. Pyatnitskii, and G.A. Chechkin, “Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary”, Siberian Mathematical J. 39 (4), 621–644 (1998).
  • [41] G. A. Chechkin, A. Friedman, and A.L. Piatnitski, “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Mathematical Analysis and Applications 231 (1), 213–234 (1999).
  • [42] A. Mikelic, Š. Nečasová, and M. Neuss-Radu, “Effective slip law for general viscous flows over an oscillating surface”, Mathematical Methods in Applied Sciences 36 (15), 2086–2100 (2013).
  • [43] R. Wojnar, “On nonlinear heat equations and diffusion in porous media”, Reports on Mathematical Physics 44 (1–2), 291–300 (1999).
  • [44] P.A. Domenico and M.D. Mifflin, “Water from low permeability sediments and land subsidence”, Water Resources Research 1 (4), 563–576 (1965).
  • [45] R.A. Fine and F.J. Millero, “Compressibility of water as a function of temperature and pressure”, J. Chemical Physics 59 (10), 5529–5536 (1973).
  • [46] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1973.
  • [47] J. Ignaczak, “Tensorial equations of motion for a fluid saturated porous elastic solid”, Bull. Pol. Ac.: Tech. 26, 8–9, 371–375, 705–709 (1978).
  • [48] G. Allaire, “One-phase newtonian flow”, in: Homogenization and Porous Media, ed. U. Hornung, pp. 45–76, Springer, Berlin, 1997.
  • [49] R. Wojnar, “On nonlinear heat equations and diffusion in porous media”, Reports on Mathematical Physics 44 (1–2), 291–300 (1999).
  • [50] J.J. Telega and R. Wojnar, “Flow of electrolyte through porous piezoelectric medium: macroscopic equations”, Comptes Rendus de l’Académie des Sciences, Series IIB Mechanics 328 (3), 225–230 (2000).
  • [51] J.J. Telega and R. Wojnar, “Electrokinetics in random piezoelectric porous media”, Bull. Pol. Ac.: Tech. 55 (1), 125–128 (2007).
  • [52] J. El Amrani, M. El Jarroudi, and A. Brillard, “Homogenization of an incompressible viscous fluid in crossflow filtration through thin porous layers”, Revue de Mécanique Appliquée et Théorique 2 (5), 547–555 (2011).
  • [53] R. Wojnar, “Flow of Stokesian fluid through a cellular medium and thermal effects”, Bull. Pol. Ac.: Tech. 62 (2), 1–9 (2014).
  • [54] R. Wojnar and W. Bielski, “Flow in the canal with plants on the bottom”, Proc. 9th Int. ISAAC Congress 1, CD-ROM (2014).
  • [55] J.W. Strutt and Baron Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium”, Philosophical Magazine XXXIV, 481–502 (1892).
  • [56] V. Mityushev, “Transport properties of two-dimensional composite materials with circular inclusions”, Proc. Roy. Soc. London A 455, 2513–2528 (2009).
  • [57] V. Mityushev, “Conductivity of a two-dimensional composite containing elliptical inclusions”, Proc. Roy. Soc. London A 465, 2991–3010 (2009).
  • [58] L.P. Castro, E. Pesetskaya, and S.V. Rogosin, “Effective conductivity of a composite material with non-ideal contact conditions”, Complex Variables and Elliptic Equations 54 (12), 1085–1100 (2009).
  • [59] H.C. Brinkman, “The viscosity of concentrated suspensions and solutions”, J. Chemical Physics 20, 571–571 (1952).
  • [60] H.C. Brinkman, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles”, Applied Scientific Research 1 (1), 27–34 (1949).
  • [61] A. Trykozko, G. Brouwer, and W. Zijl, “Downscaling: a complement to homogenization”, Int. J. Numerical Analysis and Modeling 5, 157–170 (2008).
  • [62] W. Sobieski and A. Trykozko, “Sensitivity aspects of Forchheimer’s approximation”, Transport in Porous Media 89 (2), 155–164 (2011).
  • [63] C. Kunert, J. Harting, and O.I. Vinogradova, “Random – roughness hydrodynamic boundary conditions”, Phys. Rev. Lett. 105, 16001–16004 (2010).
  • [64] J.L. Anderson and Y. Solomentsev, “Hydrodynamic effects of surface-layers on colloidal particles”, Chemical Engineering Communications 148–150, 291-314 (1996).
  • [65] H. Peng, G. Ding, W. Jiang, H. Hu, and Y. Gao, “Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube”, Int. J. Refrig. 32 (6), 1259–1270 (2009).
  • [66] I.M. Mahbubul, S.A. Fadhilah, R. Saidur, K.Y. Leong, and M.A. Amalina, “Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants”, Int. J. Heat and Mass Transfer 57, 100–108 (2013).
  • [67] J. Koplik, H. Levine, and A. Zee, “Viscosity renormalization in the Brinkman equation”, Physics of Fluids 26 (10), 2864–2870 (1983).
  • [68] B. Abedian and M. Kachanov, “On the effective viscosity of suspensions”, Int. J. Engineering Science 48, 962–965 (2010).
  • [69] M. Kachanov and I. Sevostianov, Effective Properties of Heterogeneous Materials, Springer Science, London, 2013.
  • [70] Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials”, J. Mech. Phys. Solids 11, 127–140 (1963).
  • [71] H.S. Hele-Shaw, “Flow of water”, Nature 58, 520 (1898).
  • [72] B. Gustafsson and A. Vasilev, Conformal and Potential Analysis in Hele-Shaw Cells, Advances in Mathematical Fluid Mechanics, Birkhääuser Verlag, Berlin, 2006.
  • [73] A. Vasilev, “From the Hele-Shaw experiment to integrable systems: a historical overview”, Compl. Anal. Oper. Theory 3, 551–585 (2009).
  • [74] G. Mishuris, S. Rogosin, and M. Wrobel, “Hele-Shaw flow with a small obstacle”, Meccanica 49 (9) (2014).
  • [75] V.L. Streeter and E.B. Wylie, Fluid Mechanics (6th ed.), McGraw-Hill, Düsseldorf, 1975.
  • [76] P.M. Rowiński and J. Kubrak, “A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation”, Hydrological Sciences – Journal des Sciences Hydrologiques 47 (6), 893–904 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87d9df2e-bc07-4f0b-b962-ba390d4868d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.