Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a bounded domain Ω of [formula],[formula] h and b continuous functions on Ω. Let Γ be a closed curve contained in Ω. We study existence of positive solutions [formula] to the perturbed Hardy-Sobolev equation: [formula] where [formula] is the critical Hardy-Sobolev exponent [formula] and [formula] is the distance function to Γ. We show that the existence of minimizers does not depend on the local geometry of Γ nor on the potential h. For N = 3, the existence of ground-state solution may depends on the trace of the regular part of the Green function of —Δ + h and or on b. This is due to the perturbative term of order 1 + δ.
Czasopismo
Rocznik
Tom
Strony
187--204
Opis fizyczny
Bibliogr, 22 poz.
Twórcy
autor
- African Institute for Mathematical Sciences in Senegal KM 2, Route de Joal, B.P. 14 18, Mbour, Senegal
autor
- Universite de Thies UFR des Sciences et Techniques Departement de Mathematiques, Thies, Senegal
Bibliografia
- [1] T. Aubin, Problemes isoperimetriques de Sobolev, J. Differential Geom. 11 (1976), 573-598.
- [2] M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear el liptic equation arising in astrophysics, Arch. Rational Mech. Anal. 163 (2002), no. 4, 259-293.
- [3] H. Brezis, L. Nirenberg, Positive solutions of nonlinear el liptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [4] J.L. Chern, C.S. Lin, Minimizers of Caffarel li-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Rational Mech. Anal. 197 (2010), no. 2, 401-432.
- [5] A.V. Demyanov, A.I. Nazarov, On solvability of Dirichlet problem to semilinear Schrodinger equation with singular potential, Zapiski Nauchnykh Seminarov POMI. 336 (2006), 25-45.
- [6] O. Druet, El liptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincare Anal. Non Lineaire 19 (2002), no. 2, 125-142.
- [7] I. Fabbri, G. Mancini, K. Sandeep,Classification of solutions of a critical Hardy Sobolev operator, J. Differential Equations 224 (2006), 258-276.
- [8] M.M. Fall, I.A. Minlend, E.H.A. Thiam, The role of the mean curvature in a Hardy-Sobolev trace inequality, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1047-1066.
- [9] M.M. Fall, E.H.A. Thiam, Hardy-Sobolev inequality with singularity a curve, Topol. Methods Nonlinear Anal. 51 (2018), no. 1, 151-181.
- [10] N. Ghoussoub, X.S. Kang, Hardy-Sobolev critical el liptic equations with boundary singularities, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 6, 767-793.
- [11] N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), no. 6, 1201-1245.
- [12] N. Ghoussoub, F. Robert, Sobolev inequalities for the Hardy-Schrodinger operator: extremals and critical dimensions, Bull. Math. Sci. 6 (2016), no. 1, 89-144.
- [13] H. Jaber, Hardy-Sobolev equations on compact Riemannian manifolds, Nonlinear Anal. 103 (2014), 39-54.
- [14] H. Jaber, Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds, Analysis 36 (2016), no. 4, 287-296.
- [15] Y. Li, C. Lin, A Nonlinear El liptic PDE with Two Sobolev-Hardy Critical Exponents, Springer-Verlag, 2011.
- [16] E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374.
- [17] R. Musina, Existence of extremals for the Maziya and for the Caffarel li-Kohn-Nirenberg inequalities, Nonlinear Anal. 70 (2009), no. 8, 3002-3007.
- [18] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479-495.
- [19] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
- [20] E.H.A. Thiam, Weighted Hardy inequality on Riemannian manifolds, Commun. Contemp. Math. 18 (2016), no. 6, 1550072, 25 pp.
- [21] E.H.A. Thiam, Hardy and Hardy-Sobolev inequalities on Riemannian manifolds, IMHOTEP J. Afr. Math. Pures Appl. 2 (2017), no. 1, 14-35.
- [22] E.H.A. Thiam, Hardy-Sobolev inequality with higher dimensional singularity, Analysis 39 (2019), no. 3, 79-96.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87d8f6ac-668a-4889-82e1-fe8b519b5eab