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Abstract. We consider a bounded domain Ω of RN , N ≥ 3, h and b continuous functions
on Ω. Let Γ be a closed curve contained in Ω. We study existence of positive solutions
u ∈ H1

0 (Ω) to the perturbed Hardy–Sobolev equation:

−∆u+ hu+ bu1+δ = ρ−σ
Γ u2∗

σ−1 in Ω,

where 2∗
σ := 2(N−σ)

N−2 is the critical Hardy–Sobolev exponent, σ ∈ [0, 2), 0 < δ < 4
N−2 and ρΓ

is the distance function to Γ. We show that the existence of minimizers does not depend on
the local geometry of Γ nor on the potential h. For N = 3, the existence of ground-state
solution may depends on the trace of the regular part of the Green function of −∆ + h and
or on b. This is due to the perturbative term of order 1 + δ.

Keywords: Hardy–Sobolev inequality, positive minimizers, parametrized curve, mass, Green
function.
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1. INTRODUCTION

The Hardy–Sobolev inequality with a cylindrical weight states, for N ≥ 3,
0 ≤ k ≤ N − 1 and σ ∈ [0, 2), that

∫

RN

|∇v|2dx ≥ C
(∫

RN

|z|−σ|v|2∗
σdx

)2/2∗
σ

for all v ∈ D1,2(RN ), (1.1)
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where x = (t, z) ∈ Rk × RN−k, C = C(N, σ, k) > 0, 2∗σ := 2(N−σ)
N−2 is the critical

Hardy–Sobolev exponent and D1,2(RN ) is the completion of C∞c (RN ) with respect to
the norm

v 7−→
( ∫

RN

|∇v|2dx
)1/2

.

Inequality (1.1) can be obtained by interpolating between Hardy (which corresponds
to the case σ = 2 and k 6= N − 2) and Sobolev (which is the case σ = 0) inequalities.
This inequality is invariant by scaling on RN and by translations in the t-direction.

When σ = 2 and k 6= N −2, the best constant is
(
N−k−2

2
)2 but it is never achieved.

For σ ∈ [0, 2), the best constant C in (1.1) is given by

SN,σ := min





1
2

∫

RN

|∇v|2dx− 1
2∗σ

∫

RN

|z|−σ|v|2∗
σdx, v ∈ D1,2(RN )



 . (1.2)

In the case σ ∈ [0, 2) and k = 0, SN,σ is achieved by the standard bubble

cN,σ(1 + |x|2−σ)
2−N
2−σ ,

see for instance Aubin [19], Talenti [1] and Lieb [16]. When k = N − 1, the support of
the minimizer is contained in a half space, see Musina [17].

For 1 ≤ k ≤ N − 2 and σ ∈ (0, 2), Badiale and Tarentello [2] proved the existence
of a minimizer w for (1.2). They were motivated by questions from astrophysics.
Later Mancini, Fabbri and Sandeep used the moving plane method to prove that
w(t, z) = θ(|t|, |z|), for some positive function θ. An interesting classification result
was also derived in [7] when σ = 1, that every minimizer is of the form

cN,k((1 + |z|)2 + |t|2)
2−N

2 ,

up to scaling in RN and translations in the t-direction.
Since in this paper we are interested with Hardy–Sobolev inequality with weight

singular at a given curve, our asymptotic energy level is given by SN,σ with k = 1 and
σ ∈ [0, 2).

Let Ω be a bounded domain in RN , N ≥ 3, h and b continuous function on Ω. Let
Γ ⊂ Ω be a smooth closed curve. In this paper, we are concerned with the existence of
minimizers for the infimum

µσ(Ω,Γ, h, b) := inf
u∈H1

0 (Ω)\{0}

1
2

∫

Ω

|∇u|2dx+ 1
2

∫

Ω

hu2dx

+ 1
2 + δ

∫

Ω

bu2+δdx− 1
2∗σ

∫

Ω

ρ−σΓ |u|2
∗
σdx,

(1.3)

where σ ∈ [0, 2), 2∗σ := 2(N−σ)
N−2 , 0 < δ < 4

N−2 and ρΓ(x) := dist(x,Γ) is the distance
function to Γ. Here and in the following, we assume that −∆ + h defines a coercive
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bilinear form on H1
0 (Ω) and that b ≤ 0. We are interested with the effect of b and/or

the location of the curve Γ on the existence of minimizer for µσ(Ω,Γ, h, b).
When there is no perturbation, and σ = 0, problem (1.3) reduces to the famous

Brezis–Nirenberg problem [3]. In this case, for N ≥ 4 it is enough that h(y0) < 0 to
get a minimizer, whereas for N = 3, the existence of minimizers is guaranteed by the
positiveness of a certain mass, see Druet [6].

Here, we deal with the case σ ∈ [0, 2). Our first result deals with the case N ≥ 4.
Then we have

Theorem 1.1. Let N ≥ 4, σ ∈ [0, 2) and Ω be a bounded domain of RN . Consider Γ
a smooth closed curve contained in Ω. Let h and b be continuous function such that
the linear operator −∆ + h is coercive and b ≤ 0. We assume that

b(y0) < 0, (1.4)

for some y0 ∈ Γ. Then µ(Ω,Γ, h, b) is achieved by a positive function u ∈ H1
0 (Ω).

In contrast, to the result of the second author and Fall [9], inequality (1.4) in
Theorem 1.1 shows that there is no influence of the curvature of Γ nor the potential h.
This is due to the influence of the added perturbation term in (1.3).

For N = 3, we let G(x, y) be the Dirichlet Green function of the operator −∆ + h,
with zero Dirichlet data. It satisfies

{
−∆xG(x, y) + h(x)G(x, y) = 0 for every x ∈ Ω \ {y},
G(x, y) = 0 for every x ∈ ∂Ω.

(1.5)

In addition, there exists a continuous function m : Ω → R and a positive constant
c > 0 such that

G(x, y) = c

|x− y| + cm(y) + o(1) as x→ y. (1.6)

This function m : Ω→ R is the mass of −∆ + h in Ω. Our second main result is the
following.

Theorem 1.2. Let σ ∈ [0, 2) and Ω be a bounded domain of R3. Consider a smooth
closed curve Γ contained in Ω. Let h and b be continuous functions such that the linear
operator −∆ + h is coercive and b ≤ 0. We assume that





b(y0) < 0 for 2 < δ < 4,
m(y0) > cb(y0) for δ = 2,
m(y0) > 0 for 0 < δ < 2,

(1.7)

for some positive constant c and y0 ∈ Γ. Then µσ (Ω,Γ, h, b) is achieved by a positive
function u ∈ H1

0 (Ω).

The literature about Hardy–Sobolev inequalities on domains with various sin-
gularities is very hudge. The existence of minimizers depends on the curvatures
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at a point of the singularity. For more details, we refer to Ghoussoub–Kang [10],
Ghoussoub–Robert [11, 12], Demyanov–Nazarov [5], Chern–Lin [4], Lin–Li [15],
Fall–Thiam [9], Fall–Minlend–Thiam in [8] and the references therein. We refer also to
Jaber [13,14] and Thiam [20–22] and references therein, for Hardy–Sobolev inequalities
on Riemannian manifold. Here also the impact of the scalar curvature at the point
singularity plays an important role for the existence of minimizers in higher dimensions
N ≥ 4. The paper [13] contains also existence result under positive mass condition
for N = 3.

The proof of Theorem 1.1 and Theorem 1.2 rely on test function methods. Namely
to build appropriate test functions allowing to compare µσ(Ω,Γ, h, b) and SN,σ. We
find a continuous family of test functions (uε)ε>0 concentrating at a point y0 ∈ Γ which
yields µ(Ω,Γ, h, b) < SN,σ, as ε→ 0, provided (1.7) holds. In Section 4, we consider the
case N = 3. Due to the fact that the ground-state w for S3,σ, σ ∈ (0, 2) is not known
explicitly, it is not radially symmetric, it is not smooth and S3,σ is only invariant
under translations in the t−direction; we could only construct a discrete family of test
functions (Ψεn)n∈N that leads to the inequality µσ(Ω,Γ, h, b) < S3,σ. These are similar
to the test functions (uεn)n∈N in dimension N ≥ 4 near the concentration point y0,
but away from it is substituted with the regular part of the Green function G(x, y0),
which makes appear the mass m(y0) and/or b(y0) in its first order Taylor expansion,
see (1.6).

The paper is organized as follows: In Section 2, we recall some geometric and
analytic preliminaries results relating to the local geometry of the curve Γ and the
decay estimates of the ground state w of SN,σ. In Sections 3 and 4, we construct a test
function for µσ(Ω,Γ, h, b) in order to prove Theorem 1.1 and Theorem 1.2. Their proof
is completed in Section 5.

2. PRELIMINARIES RESULTS

Let Γ ⊂ RN be a smooth closed curve. Let (E1; . . . ;EN ) be an orthonormal basis of RN .
For y0 ∈ Γ and r > 0 small, we consider the curve γ : (−r, r)→ Γ, parameterized by
arc length such that γ(0) = y0. Up to a translation and a rotation, we may assume
that γ′(0) = E1. We choose a smooth orthonormal frame field (E2(t); . . . ;EN (t)) on
the normal bundle of Γ such that (γ′(t);E2(t); . . . ;EN (t)) is an oriented basis of RN
for every t ∈ (−r, r), with Ei(0) = Ei.

We fix the following notation, that will be used a lot in the paper,

Qr := (−r, r)×BRN−1(0, r),

where BRN−1(0, r) denotes the ball in RN−1 with radius r centered at the origin.
Provided r > 0 small, the map Fy0 : Qr → Ω, given by

(t, z) 7→ Fy0(t, z) := γ(t) +
N∑

i=2
ziEi(t),
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is smooth and parameterizes a neighborhood of y0 = Fy0(0, 0). We consider ρΓ : Γ→ R
the distance function to the curve given by

ρΓ(y) = min
y∈RN

|y − y|.

In the above coordinates, we have

ρΓ (Fy0(x)) = |z| for every x = (t, z) ∈ Qr. (2.1)

Clearly, for every t ∈ (−r, r) and i = 2, . . . N , there are real numbers κi(t) and τ ji (t)
such that

E′i(t) = κi(t)γ′(t) +
N∑

j=2
τ ji (t)Ej(t). (2.2)

The quantity κi(t) is the curvature in the Ei(t)-direction while τ ji (t) is the torsion
from the osculating plane spanned by {γ′(t);Ej(t)} in the direction Ei. We note that
provided r > 0 small, κi and τ ji are smooth functions on (−r, r). Moreover, it is easy
to see that

τ ji (t) = −τ ij(t) for i, j = 2, . . . , N . (2.3)

The curvature vector is κ : Γ→ RN is defined as

κ(γ(t)) :=
N∑

i=2
κi(t)Ei(t)

and its norm is given by

|κγ(t)| :=

√√√√
N∑

i=2
κ2
i (t).

Next, we derive the expansion of the metric induced by the parameterization Fy0

defined above. For x = (t, z) ∈ Qr, we define

g11(x) = ∂tFy0(x) · ∂tFy0(x),
g1i(x) = ∂tFy0(x) · ∂ziFy0(x),
gij(x) = ∂zjFy0(x) · ∂ziFy0(x).

We have the following result.
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Lemma 2.1. There exits r > 0, only depending on Γ and N , such that for ever
x = (t, z) ∈ Qr





g11(x) = 1 + 2
N∑

i=2
ziκi(0) + 2t

N∑

i=2
ziκ
′
i(0) +

N∑

ij=2
zizjκi(0)κj(0)

+
N∑

ij=2
zizjβij(0) +O(|x|3),

g1i(x) =
N∑

j=2
zjτ

i
j(0) + t

N∑

j=2
zj
(
τ ij
)′ (0) +O(|x|3),

gij(x) = δij ,

(2.4)

where βij(t) :=
∑N
l=2 τ

l
i (t)τ lj(t).

Proof. To alleviate the notations, we will write F = Fy0 . We have

∂tF (x) = γ′(t) +
N∑

j=2
zjE

′
j(t) and ∂ziF (x) = Ei(t). (2.5)

Therefore
gij(x) = Ei(t) · Ej(t) = δij . (2.6)

By (2.2) and (2.5), we have

g1i(x) =
N∑

l=2
zlE
′
l(t) · Ei(t) =

N∑

j=2
zjτ

i
j(t) (2.7)

and

g11(x) = ∂tF (x) · ∂tF (x)

= 1 + 2
N∑

i=2
ziκi(t) +

N∑

ij=2
zizjκi(t)κj(t) +

N∑

ij=2
zizj

(
N∑

l=2
τ li (t)τ lj(t)

)
.

(2.8)

By Taylor expansions, we get

κi(t) = κi(0) + tκ′i(0) +O
(
t2
)

and
τki (t) = τki (0) + t

(
τki
)′ (0) +O

(
t2
)
.

Using these identities in (2.8) and (2.7), we get (2.4), thanks to (2.6). This ends the
proof.
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As a consequence we have the following result.
Lemma 2.2. There exists r > 0 only depending on Γ and N , such that for every
x ∈ Qr, we have

√
|g|(x) = 1 +

N∑

i=2
ziκi(0) + t

N∑

i=2
ziκ
′
i(0) + 1

2

N∑

ij=2
zizjκi(0)κj(0) +O(|x|3), (2.9)

where |g| stands for the determinant of g. Moreover g−1(x), the matrix inverse of g(x),
has components given by




g11(x) = 1− 2
N∑

i=2
ziκi(0)− 2t

N∑

i=2
ziκ
′
i(0) + 3

N∑

ij=2
zizjκi(0)κj(0) +O(|x|3),

gi1(x) = −
N∑

j=2
zjτ

i
j(0)− t

N∑

j=2
zj
(
τ ij
)′ (0) + 2

N∑

j=2
zlzjκl(0)τ ij(0) +O(|x|3),

gij(x) = δij +
N∑

lm=2
zlzmτ

j
l (0)τ im(0) +O(|x|3).

(2.10)
Proof. We write

g(x) = id+H(x),
where id denotes the identity matrix on RN and H is a symmetric matrix with
components Hαβ , for α, β = 1, . . . , N , given by





H11(x) = 2
N∑

i=2
ziκi(0) + 2t

N∑

i=2
ziκ
′
i(0) +

N∑

ij=2
zizjκi(0)κj(0)

+
N∑

ij=2
zizjβij(0) +O(|x|3),

H1i(x) =
N∑

j=2
ziτ

i
j(0) +O

(
|x|2
)
,

Hij(x) = 0.

(2.11)

We recall that as |H| → 0,
√
|g| =

√
det (I +H) = 1 + tr H

2 + ( tr H)2

4 − tr (H2)
4 +O

(
|H|3

)
. (2.12)

Now by (2.11), as |x| → 0, we have

tr H
2 =

N∑

i=2
ziκi(0) + t

N∑

i=2
ziκ
′
i(0) + 1

2

N∑

ij=2
zizjκi(0)κj(0)

+ 1
2

N∑

ij=2
zizjβij(0) +O(|x|3),

(2.13)
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so that
( tr H)2

4 =
N∑

ij=2
zizjκi(0)κj(0) +O(|x|3). (2.14)

Moreover, from (2.11), we deduce that

tr (H2)(x) =
N∑

α=1

(
H2(x)

)
αα

=
N∑

αβ=1
Hαβ(x)Hβα(x)

=
N∑

αβ=1
H2
αβ(x) = H2

11(x) + 2
N∑

i=2
H2
i1(x),

so that

− tr (H2)
4 = −

N∑

ij=2
zizjκi(0)κj(0)− 1

2

N∑

ijl=2
zizjτ

l
i (0)τ lj(0) +O(|x|3). (2.15)

Therefore plugging the expression from (2.13), (2.14) and (2.15) in (2.12),
we get

√
|g|(x) = 1 +

N∑

i=2
ziκi(0) + t

N∑

i=2
ziκ
′
i(0) + 1

2

N∑

ij=2
zizjκi(0)κj(0) +O(|x|3).

The proof of (2.9) is thus finished.
By Lemma 2.1, we can write

g(x) = id+A(x) +B(x) +O(|x|3),

where A and B are symmetric matrix with components (Aαβ) and (Aαβ),
α, β = 1, . . . , N , given respectively by

A11(x) = 2
N∑

i=2
ziκi(0), Ai1(x) =

N∑

j=2
zjτ

i
j(0) and Aij(x) = 0 (2.16)

and




B11(x) = 2t
N∑

i=2
ziκ
′(0) +

N∑

i=2
zizjκi(0)κj(0) +

N∑

ij=2
zizjβij(0),

Bi1(x) = t
∑

j=2
zj
(
τ ij
)′ (0) and Bij(x) = 0.

(2.17)

We observe that, as |x| → 0, we have

g−1(x) = id−A(x)−B(x) +A2(x) +O(|x|3).
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We then deduce from (2.16) and (2.17) that

g11(x) = 1−A11(x)−B11(x) +A2
11(x) +

N∑

i=1
A2

1i(x) +O(|x|3)

= 1− 2
N∑

i=2
ziκi(0)− 2t

N∑

i=2
ziκ
′(0) + 3

N∑

i=2
zizjκi(0)κj(0)

+ 3
N∑

ij=2
zizjβij(0) +O(|x|3),

gi1(x) = −A1i(x)−B1i(x) +
N∑

α=1
AiαA1α +O(|x|3)

= −A1i(x)−B1i(x) +Ai1(x)A11(x) +
N∑

j=2
Aij(x)A1j(x) +O(|x|3)

= −
N∑

j=2
zjτ

i
j(0)− t

∑

j=2
zj
(
τ ij
)′ (0) + 2

N∑

jl=2
zlzjκl(0)τ ij(0)

and

gij(x) = δij −Aij(x)−Bij(x) +
(
A2)

ij
(x) +O(|x|3)

= δij −Aij(x)−Bij(x) +A1iA1j +
N∑

l=2
Ail(x)Ajl(x) +O(|x|3)

= δij +
N∑

lm=2
zlzmτ

i
m(0)τ jl (0) +O(|x|3).

This ends the proof.

We recall that the best constant for the cylindrical Hardy–Sobolev inequality is
given by

SN,σ = min





1
2

∫

RN

|∇w|2dx− 1
2∗σ

∫

RN

|z|−σ|w|2∗
σdx : w ∈ D1,2(RN )



 .

Further it is attained by a positive function w ∈ D1,2(RN ), that satisfies the
Euler–Lagrange equation

−∆w = |z|−σw2∗
σ−1 in RN , (2.18)

see e.g. [2]. By [7], we have the last result of this section.
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Lemma 2.3. For N ≥ 3, we have

w(x) = w(t, z) = θ (|t|, |z|) for a function θ : R+ × R+ → R+. (2.19)

Moreover, there exists two constants 0 < C1 < C2, such that

C1
1 + |x|N−2 ≤ w(x) ≤ C2

1 + |x|N−2 in RN . (2.20)

3. EXISTENCE OF MINIMZERS FOR µ(Ω,Γ, h, b) IN DIMENSION N ≥ 4

We consider Ω a bounded domain of RN , N ≥ 3 and Γ ⊂ Ω be a smooth closed curve.
For u ∈ H1

0 (Ω) \ {0}, we define the functional

J (u) := 1
2

∫

Ω

|∇u|2dy + 1
2

∫

Ω

hu2dy + 1
2 + δ

∫

Ω

bu2+δdy − 1
2∗σ

∫

Ω

ρ−σΓ |u|2
∗
σdy. (3.1)

We let η ∈ C∞c (Fy0 (Q2r)) be such that

0 ≤ η ≤ 1 and η ≡ 1 in Qr.

For ε > 0, we consider uε : Ω→ R given by

uε(y) := ε
2−N

2 η(F−1
y0 (y))w

(
ε−1F−1

y0 (y)
)
. (3.2)

In particular, for every x = (t, z) ∈ R× RN−1, we have

uε (Fy0(x)) := ε
2−N

2 η (x) θ (|t|/ε, |z|/ε) . (3.3)

It is clear that uε ∈ H1
0 (Ω). Then we have the following proposition.

Proposition 3.1. For all N ≥ 4, we have

J(uε) = SN,σ + ε2− δ(N−2)
2 b(y0)

∫

RN

wδ+2dx+ o
(
ε2− δ(N−2)

2

)
, (3.4)

as ε→ 0.

The proof of Proposition 3.1 is divided in two parts, Lemma 3.2 and Lemma 3.3
below. For that we set

J1 (u) := 1
2

∫

Ω

|∇u|2dx+ 1
2

∫

Ω

hu2dx− 1
2∗σ

∫

Ω

ρ−σΓ |u|2
∗
σdx,

the following is due to the second author and Fall [9].
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Lemma 3.2. We have

J1 (uε) = SN,σ +
{
O(ε2) for all N ≥ 5,
O(ε2| log(ε)|) for all N = 4.

(3.5)

We finish the proof by the following lemma.

Lemma 3.3. We have




∫

Ω

bu2+δ
ε dx = ε2− δ(N−2)

2 b(y0)
∫

RN

wδ+2dx+O
(
ε2) for N ≥ 4,

∫

Ω

bu2+δ
ε dx = ε2− δ2 b(y0)

∫

Qr/ε

wδ+2dx+O
(
ε2) for N = 3 and δ ≤ 1,

∫

Ω

bu2+δ
ε dx = ε2− δ2 b(y0)

∫

RN

wδ+2dx+O
(
ε1+ δ

2

)
for N = 3 and δ > 1

as ε→ 0.

Proof. We have
∫

Ω

b(x)u2+δ
ε dx =

∫

Fy0 (Qr)

b(x)u2+δ
ε dx+

∫

Fy0 (Q2r)\Fy0 (Qr)

b(x)u2+δ
ε dx.

Since b is continuous and r is small, then by the change of variable formula y = F (x)
ε ,

we have
∫

Ω

b(x)u2+δ
ε dx = b(y0)ε2− δ(N−2)

2

∫

Qr/ε

w2+δdx

+O


ε4− δ(N−2)

2

∫

Qr/ε

|x|2w2+δdx+ ε2− δ(N−2)
2

∫

Q2r/ε\Qr/ε

w2+δdx




= b(y0)ε2− δ(N−2)
2

∫

Qr/ε

w2+δdx

+O


ε4− δ(N−2)

2

∫

Qr/ε

|x|2w2+δdx+ ε2− δ(N−2)
2

∫

Q2r/ε\Qr/ε

w2+δdx


 .

Thanks to (2.20), we have

ε4− δ(N−2)
2

∫

Qr/ε

|x|2w2+δdx+ ε2− δ(N−2)
2

∫

Q2r/ε\Qr/ε

w2+δdx = O(ε2) for all N ≥ 3
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and
ε2− δ(N−2)

2

∫

Q2r/ε\Qr/ε

w2+δdx = O(ε2) for all N ≥ 4.

We finish by noticing that, for N = 3, we have
∫

RN\Qr/ε

w2+δdx = O(εδ−1).

This then ends the proof of the lemma.

4. EXISTENCE OF MINIMIZER FOR µh(Ω,Γ, h, b) IN DIMENSION THREE

We consider the function

R : R3 \ {0} → R, x 7→ R(x) = 1
|x|

which satisfies
−∆R = 0 in R3 \ {0}. (4.1)

We denote by G the solution to the equation
{
−∆xG(y, ·) + hG(y, ·) = 0 in Ω \ {y},
G(y, ·) = 0 on ∂Ω,

(4.2)

and satisfying

G(x, y) = R(x− y) +O(1) for x, y ∈ Ω and x 6= y. (4.3)

We note that G is proportional to the Green function of −∆ + h with zero Dirichlet
data.

We let χ ∈ C∞c (−2, 2) with χ ≡ 1 on (−1, 1) and 0 ≤ χ < 1. For r > 0, we consider
the cylindrical symmetric cut-off function

ηr(t, z) = χ

( |t|+ |z|
r

)
for every (t, z) ∈ R× R2. (4.4)

It is clear that

ηr ≡ 1 in Qr, ηr ∈ H1
0 (Q2r), |∇ηr| ≤

C

r
in R3.

For y0 ∈ Ω, we let r0 ∈ (0, 1) such that

y0 +Q2r0 ⊂ Ω. (4.5)
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We define the function My0 : Q2r0 → R given by

My0(x) := G(y0, x+ y0)− ηr(x) 1
|x| for every x ∈ Q2r0 . (4.6)

It follows from (4.3) that My0 ∈ L∞(Qr0). By (4.2) and (4.1),

| −∆My0(x) + h(x)My0(x)| ≤ C

|x| = CR(x) for every x ∈ Qr0 ,

whereas R ∈ Lp(Qr0) for every p ∈ (1, 3). Hence by elliptic regularity theory, My0 ∈
W 2,p(Qr0/2) for every p ∈ (1, 3). Therefore by Morrey’s embdding theorem, we deduce
that

‖My0‖C1,%(Qr0/2) ≤ C for every % ∈ (0, 1). (4.7)

In view of (1.6), the mass of the operator −∆ + h in Ω at the point y0 ∈ Ω is given by

m(y0) = My0(0). (4.8)

We recall that the positive ground state solution w satisfies

−∆w = |z|−σw2∗
σ−1 in R3, (4.9)

where x = (t, z) ∈ R× R2. In addition by (2.20), we have

C1
1 + |x| ≤ w(x) ≤ C2

1 + |x| in R3. (4.10)

The following result will be crucial in the sequel.

Lemma 4.1. Consider the function vε : R3 \ {0} → R given by

vε(x) = ε−1w
(x
ε

)
.

Then there exists a constant c > 0 and a sequence (εn)n∈N (still denoted by ε) such
that

vε(x)→ c
|x| for almost every x ∈ R3

and
vε(x)→ c

|x| for every x ∈ R3 \ {z = 0}. (4.11)

For a proof, see for instance [9, Lemma 5.1].
Next, given y0 ∈ Γ ⊂ Ω ⊂ R3, we let r0 as defined in (4.5). For r ∈ (0, r0/2),

we consider Fy0 : Qr → Ω (see Section 2) parameterizing a neighborhood of y0 in Ω,
with the property that Fy0(0) = y0. For ε > 0, we consider uε : Ω→ R given by

uε(y) := ε−1/2ηr(F−1
y0 (y))w

(
F−1
y0 (y)
ε

)
.
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We can now define the test function Ψε : Ω→ R by

Ψε (y) = uε(y) + ε1/2c η2r(F−1
y0 (y))My0(F−1

y0 (y)). (4.12)

It is plain that Ψε ∈ H1
0 (Ω) and

Ψε (Fy0(x)) = ε−1/2ηr(x)w
(x
ε

)
+ ε1/2c η2r(x)My0(x) for every x ∈ RN .

The main result of this section is contained in the following result.

Proposition 4.2. Let (εn)n∈N and c be the sequence and the number given by
Lemma 4.1. Then there exists r0, n0 > 0 such that for every r ∈ (0, r0) and n ≥ n0





J(Ψε) = S3,σ − εnπ2m(y0)c2 + ε
2− δ2
n

2 + δ

∫

Qr/ε

w2+δdx+Or(εn) for δ ≤ 1,

J(Ψε) = S3,σ − εnπ2m(y0)c2 + ε
2− δ2
n

2 + δ

∫

R3

w2+δdx+Or(εn) for δ > 1

for some numbers Or(εn) satisfying

lim
r→0

lim
n→∞

ε−1
n Or(εn) = 0.

The proof of this proposition will be separated into two steps given by Lemma 4.3
and Lemma 4.4 below. To alleviate the notations, we will write ε instead of εn and
we will remove the subscript y0, by writing M and F in the place of My0 and Fy0 ,
respectively. We define

η̃r(y) := ηr(F−1(y)),
Vε(y) := vε(F−1(y)),

M̃2r(y) := η2r(F−1(y))M(F−1(y)),

where vε(x) = ε−1w
(
x
ε

)
. With these notations, (4.12) becomes

Ψε(y) = uε(y) + ε
1
2 c M̃2r(y) = ε

1
2Vε(y) + ε

1
2 c M̃2r(y). (4.13)

We first consider the numerator in (4.2).

Lemma 4.3. We have

J1(Ψε) = S3,σ − επ2c2m(y0) +Or(ε),

as ε→ 0.

For a proof, see for instance [9, Proposition 5.3]. The following result together with
the previous lemma provides the proof of Proposition 4.2.
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Lemma 4.4. We have
∫

Ω

|Ψε|2+δdy = ε2− δ2 b(y0)
∫

Qr/ε

w2+δdx+ o
(
ε2− δ2

)
,

as ε→ 0.

Proof. Since δ > 0, by the Taylor expansion we have
∫

Ω

|Ψε|2+δdy =
∫

Ω

|uε + ε1/2M̃2r|2+δdy

=
∫

Ω

|uε|2+δdy +O
(
ε1/2

∫

Ω

|uε|1+δ|M̃2r|dy

+
∫

Ω

|uε|δ|M̃2r|2dy +
∫

Ω

|M̃2r|2+δdy
)
.

(4.14)

Using Hölder’s inequality and (2.9), we have
∫

F (Q4r)

|ηuε|δ
(
ε1/2M̃r

)2
dy ≤ ε‖uε‖δL2+δ(F (Q4r))‖M̃2r‖2L2+δ(F (Q4r))

= ε4− δ2 ‖w‖δ
L2+δ(Q4r;

√
|g|)‖M̃2r‖2L2+δ(F (Q4r))

≤ ε4− δ2 ‖M̃2r‖2L2+δ(F (Q4r)) = o(ε),

(4.15)

Since δ > 0, by (4.7), we easily get
∫

F (Q4r)

|ε1/2M̃2r|2+δdy = O(ε1+ δ
2 ) = o(ε). (4.16)

By (4.14), (4.16), (4.15) and Lemma 3.3, it results

∫

Ω

|Ψε|2+δdy =
∫

F (Qr)

|uε|2+δdy +O


ε1/2

∫

F (Qr)

|uε|1+δM̃2rdy


+ o(ε)

= ε2− δ2 b(y0)
∫

Qr/ε

wδ+2dx+O


ε1/2

∫

F (Qr)

|uε|1+δM̃2rdy


+ o(ε).

We define
Bε(x) := M(εx)

√
|gε|(x) = M(εx)

√
|g|(εx).
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Then by the change of variable y = F (x)
ε in the above identity and recalling (2.9), then

by oddness, we have

ε1/2
∫

Ω

|uε|1+δ|M̃2r|dy = O


ε3−δ/2

∫

Qr/ε

|w|1+δdx


 = O

(
ε3−δ/2

)
.

Therefore ∫

Ω

|Ψε|2+δdy = ε2− δ2 b(y0)
∫

Qr/ε

w2+δdx+ o
(
ε2− δ2

)
,

as ε→ 0. This then ends the proof.

5. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

It is well known in the literature that if

µσ(Ω,Γ, h, b) < SN,σ, (5.1)

then µσ(Ω,Γ, h, b) is achieved by a positive function u ∈ H1
0 (Ω). For a similar result,

we refer to the works of [9, 14, 22] and references therein. Therefore, the proofs of
Theorem 1.1 and Theorem 1.2 are direct consequences of Propositions 3.1 and 4.2,
and inequality (5.1) above.
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