PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditions for the sustainable development of electromobility in the European Union road transport from the perspective of the European Green Deal

Treść / Zawartość
Warianty tytułu
PL
Uwarunkowania zrównoważonego rozwoju elektromobilności w transporcie samochodowym Unii Europejskiej z perspektywy Europejskiego Zielonego Ładu
Języki publikacji
EN
Abstrakty
EN
The article concerns the analysis of trends and policies supporting the development of zero-emission mobility, in accordance with the assumptions of the European Green Deal. The aim of the study is to identify and assess the essential factors determining the level of sustainability of the electromobility system in relation to individual car transport in the European Union. he article reviews strategies for the development of climate-neutral mobility as outlined in strategic documents, the European Green Deal and the “Fit for 55” package. The current state of development of the electric vehicle market and charging infrastructure is shown, which implies a number of challenges in the pursuit of emission-free mobility. A review of the literature on the subject and the results of the expert analysis confirmed the importance of national and regional policies in the uptake of electric vehicles. Taking active measures to increase the level of sustainability of the electromobility system should first focus on the further development of charging infrastructure, the creation of an EV battery value chain and the uptake of cars. The main expectations for the development of electromobility are to reduce CO2 emissions, reduce dependence on the supply of fossil fuels, increase the competitiveness and innovation of the economy, and reduce the social costs generated by transportation.
Twórcy
  • Department of Logistics and Innovation, Institute of Logistics and Computer Science, Faculty of Economics and Sociology, University of Lodz, Rewolucji 1905 r. 37/39, 90-214 Lodz, Poland
Bibliografia
  • [1] ACEA, 2021, Electric cars: lower-income countries fall behind, with uptake linked to GDP per capita, https://www.acea.auto/press-release/electric-cars-lower-income-countries-fall-behind-with-uptake-linked-to-gdp-per-capita/ [access: 15.09.2022].
  • [2] Ajanovic A., Haas R., 2017, The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15, Renewable and Sustainable Energy Reviews, 68, 1088-1096, DOI: 10.1016/j.rser.2016.02.013.
  • [3] Barrett J., Bivens J., 2021, The stakes for workers in how policymakers manage the coming shift to all-electric vehicles. Report, Economic Policy Institute, Washington.
  • [4] Charging infrastructure for electric vehicles, 2021, European Court of Auditors.
  • [5] Chinoracky R., Stalmasekova N., Corejova T., 2022, Trends in the Field of Electromobility – From the Perspective of Market Characteristics and Value-Added Services: Literature Review, Energies, 15(17), 6144, DOI: 10.3390/en15176144.
  • [6] Coban H. H., Rehman A., Mohamed A., 2022, Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport, Energies, 15(5), 1925, DOI: 10.3390/en15051925.
  • [7] de Souza J. V. R., de Mello A. M., Marx R., 2019, When is an Innovative Urban Mobility Business Model Sustainable? A Literature Review and Analysis, Sustainability, 11, 5-18.
  • [8] Directive 2014/94/EU of the European Parliament and of the Council of October 22, 2014 on the development of alternative fuel infrastructure, 2014, OJ L 307, 28.10.2014, 1-20.
  • [9] Du H., Liu D., Sovacool B. K., Wang Y., Ma S., Li R. Y. M., 2018, Who buys New Energy Vehicles in China? Assessing social-psychological predictors of purchasing awareness, intention, and policy, Transportation Research, Part F: Traffic Psychology and Behaviour, 58, 56-69, DOI: 10.1016/j.trf.2018.05.008.
  • [10] EAFO, 2021a, Alternative fuels (electricity), charging infra stats, European Alternative Fuels Observatory, https://www.eafo.eu/ alternative-fue [access: 15.09.2022].
  • [11] EAFO, 2021b, Vehicles and fleet, passenger cars, European Alternative Fuels Observatory, https://www.eafo.eu/vehiclesand-fleet/m1 [access: 10.09.2022].
  • [12] EEA Report, 2022, Transport and environment report 2021. Decarbonising road transport – the role of vehicles, fuels and transport demand, No 2.
  • [13] Electric Vehicle Outlook 2020, 2020, Bloomberg NEF.
  • [14] Electric vehicles from life cycle and circular economy perspectives, 2018, TERM 2018: Transport and Environment Reporting Mechanism, EEA, 13.
  • [15] Electro-Mobility Changes Rules of Game for Automotive Industry, 2018, The FINANCIAL, September 5.
  • [16] EU Battery Regulation Make New Demands on Industry, https://www.stenarecycling.com/events/future-of-battery-recycling/eu-battery-regulations-make-new-demands-on-industry-3/ [access: 15.10.2022].
  • [17] European Green Deal, Communication from the Commission to the European Parliament, 2019, the European Council, the Council, the Economic and Social Committee and the Committee of the Regions, COM(2019) 640, Brussels.
  • [18] Eurostat. Final energy consumption in road transport by type of fuel, (online data code: TEN00127), https://ec.europa.eu/eurostat/databrowser/view/ten00127/default/table?lang=en [access: 05.09.2022].
  • [19] Federal Ministry of Transport and Digital Infrastructure, 2020, Funding guideline for charging infrastructure for electric vehicles, https://www.bmvi.de/DE/Themen/Mobilitaet/Elektromobilitaet/Ladeinfrastruktur/Ladeinfrastruktur.html [access: 27.09.2022].
  • [20] France Relance recovery plan: building the France of 2030, 2020, France Diplomacy, https://www.diplomatie.gouv.fr/en/french-foreign-policy/ [access: 15.10.2022].
  • [21] Gallo M., Marinelli M., 2020, Sustainable Mobility: A Review of Possible Actions and Policies, Sustainability, 12(18), 7499, DOI: 10.3390/su12187499.
  • [22] Gevaers R., de Voorde E., van Vanelslander T., 2014, Cost Modelling and Simulation of Last-mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities, Procedia – Social and Behavioral Sciences, 125, 410-411, DOI: 10.1016/j.sbspro.2014.01.1483.
  • [23] Global Energy Review: CO2 Emissions in 2021, 2022, IEA.
  • [24] Global EV Outlook 2022, 2022, IEA, Paris.
  • [25] Fit for 55: delivering the EU’s 2030 Climate Target on the way to climate neutrality, 2021, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2021) 550, Brussels.
  • [26] Gómez Vilchez J. J., Julea A., Lodi C., Marotta A., 2022, An analysis of trends and policies promoting alternative fuel vessels and their refueling infrastructure in Europe, Frontiers in Energy Research, 10, 904500. DOI: 10.3389/fenrg.2022.904500.
  • [27] Hall D., Xie Y., Minjares R., Lutsey N., Kodjak D., 2021, Decarbonizing road transport by 2050: Effective policies to accelerate the transition to zero-emission vehicles, International Council on Clean Transportation.
  • [28] Helmers E., Dietz J., Weiss M., 2020, Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions, Sustainability, 12(3), 1241, DOI: 10.3390/su12031241.
  • [29] Holden E., Gilpin G., Banister D., 2019, Sustainable Mobility at Thirty, Sustainability, 11(7), DOI: 10.3390/su11071965.
  • [30] IEA data, 2022, https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer [access: 30.08.2022].
  • [31] IPCC, 2022, Climate Change 2022: Impacts, Adaptation and Vulnerability, https://www.ipcc.ch/report/ar6/wg2/ [access: 17.09.2022].
  • [32] Jagiełło A., 2021, Elektromobilność w kształtowaniu rozwoju drogowego transportu miejskiego w Polsce, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
  • [33] Jochem P., Plötz P., Ng W. S., Rothengatter W., 2018, The contribution of electric vehicles to environmental challenges in transport, Transportation Research, Part D: Transport and Environment, 64, 1-4, DOI: 10.1016/j.trd.2018.06.022.
  • [34] Kester J., Noel L., Zarazua de Rubens G., Benjamin K., Sovacool B. K., 2018, Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region, Renewable and Sustainable Energy Reviews, 94, 719-731, DOI: 10.1016/j.rser.2018.05.067.
  • [35] Klecha L., Gianni F., 2018, Designing for Sustainable Urban Mobility Behaviour: A Systematic Review of the Literature, Springer, Switzerland, 137149, DOI:10.1007/978-3-319-61322-2_14, https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2590456/designing_for.pdf?sequence=4 [access: 20.10.2022].
  • [36] Kolz D., Schwartz M., 2017, Key Factors for the Development of Electro Mobility, WIT Transactions on Ecology and the Environment, 224, 225-233, DOI: 10.2495/ESUS170211.
  • [37] Kumar R. R., Kumar A., 2020, Adoption of electric vehicle: A literature review and prospects for sustainability, Journal of Cleaner Production, 253, DOI: 10.1016/j.jclepro.2019.119911.
  • [38] Li L. L., Wang Z., Wang Q., 2020, Do policy mix characteristics matter for electric vehicle adoption? A survey-based exploration, Transportation Research, Part D: Transport and Environment, 87, DOI: 10.1016/j.trd.2020.102488.
  • [39] Liao F., Molin E. J. E., van Wee G. P., 2017, Consumer preferences for electric vehicles: a literature review, Transport Reviews, 37(3), 252-275, DOI: 10.1080/01441647.2016.1230794.
  • [40] Licznik elektromobilności, 2022, https://orpa.pl/licznik-elektromobilnosci-w-styczniu-bez-przelomu-na-polskim-rynku-samochodow-elektrycznych/ [access: 17.08.2022].
  • [41] Magalhães I., Santos E., 2022, Evaluating the potential of mobility plans for achieving sustainable urban development, Research in Transportation Business & Management, 43, DOI: 10.1016/j.rtbm.2021.100743.
  • [42] Mantouka E. G ., Fafoutellis P., Vlahogianni E. I., Oprea G.-M., 2022, Understanding user perception and feelings for autonomous mobility on demand in the COVID-19 pandemic era, Transportation Research Interdisciplinary Perspectives, 16, DOI: 10.1016/j.trip.2022.100692.
  • [43] Mężyk A., Zamkowska S., 2017, Rozwój polityki transportowej UE dla miast, Autobusy– Technika, Eksploatacja, Systemy Transportowe, 6, 1730-1736.
  • [44] Milakis D., Van Arem B., Vanwee B., 2017, Policy and society related implications of automated driving: a review of literature and directions for future research, Journal of Intelligent Transportation Systems, 21, 324-348, DOI: 10.1080/15472450.2017.1291351.
  • [45] Moćko W., Wojciechowski A., Ornowski M., 2011, Perspektywy rozwoju rynku samochodów elektrycznych w najbliższych latach, Transport Samochodowy, 1(31), 56-69.
  • [46] Moreno A. T., Michalski A., Llorca C., Moeckel R., 2018, Shared autonomous vehicles effect on vehicle-km traveled and average trip duration, Journal of Advanced Transportation, 1-16, DOI: 10.1155/2018/8969353.
  • [47] Motowidlak U., 2020, Kierunki rozwoju mobilności niskoemisyjnej, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
  • [48] Mouratidis K., 2022, Bike-sharing, car-sharing, e-scooters, and Uber: Who are the shared mobility users and where do they live?, Sustainable Cities and Society, 86, 104161, DOI: 10.1016/j.scs.2022.104161.
  • [49] Netherlands Enterprise Agency, Electric transport in the Netherlands, https://english.rvo.nl/information/electric-transport# [access: 11.09.2022].
  • [50] Philip M., Taylor M. A. P., 2017, Research agenda for low-carbon mobility: Issues for New World Cities, International Journal of Sustainable Transportation, 11, 1, Low Carbon Mobility, 49-58, DOI: 10.1080/15568318.2015.1106261.
  • [51] Proposal for a Directive of the European Parliament and of the Council on the energy performance of buildings (recast), 2021, COM(2021) 802, Brussels.
  • [52] Proposal for a Regulation of the European Parliament and of the Council on the development of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council, 2021, COM(2021) 559, Brussels.
  • [53] Prussi M., Yugo M., De Prada L., Padella M., Edwards R., 2020, JEC Well-To-Wheels, Report, Publications Office of the European Union, Luxembourg.
  • [54] Rabiega W., Gorzałczyński A., Jeszke R., Mzyk P., Szczepański K., 2021, How Long Will Combustion Vehicles Be Used? Polish, Transport Sector on the Pathway to Climate Neutrality, Energies, 14(23), DOI: 10.3390/en14237871.
  • [55] Ren R., Hu W., Dong J., Sun B., Chen Y., Chen Z., 2020, A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy, International Journal of Environmental Research and Public Health, 17(1), 26, DOI: 10.3390/ijerph17010261.
  • [56] Renewable energy in Europe 2018: recent growth and knock-on effects, 2018, EEA Report.
  • [57] Romare M., Dahllöf L., 2017, Greenhouse Gas Emissions from Lithium-Ion Batteries, Swedish Environmental Research Institute, Stockholm.
  • [58] Silvestri L., Forcina A., Silvestri C., Traverso M., 2021, Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects, Journal of Cleaner Production, 292, DOI: 10.1016/j.jclepro.2021.126089.
  • [59] Smardz J., 2022, Elektromobilność w Polsce – szanse i potencjalne zagrożenia, Agencja Rynku Energii, Warszawa.
  • [60] Spain mobility stimulus – Program to promote electric and sustainable mobility (MOVES Plan), https://www.iea.org/policies/11564-spain-mobility-stimulus-program-to-promote-electric-and-sustainable-mobility-moves-plan [access: 15.10.2022].
  • [61] State of the art on alternative fuels transport systems in the European Union – 2020 update, 2021, European Commission. Sustainable and Smart Mobility Strategy – putting European transport on track for the future, 2020, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2020) 789, Brussels.
  • [62] Šoltés E., Brezina I., Pekár J., 2021, Electromobility and its relationship with the economic development and air pollution in the EU area, Geografický časopis, 73, 103-123, DOI: 10.31577/geogrcas.2021.73.2.06.
  • [63] The first and last mile – the key to sustainable urban transport, 2020, EEA Report No 18/2019.
  • [64] Ueda M., Hirota T., Hatano A., 2010, Challenges of Widespread Marketplace Acceptance of Electric Vehicles – Towards a Zero-Emission Mobility Society, SAE Technical Paper, 1, 2312, DOI: 10.4271/2010-01-2312.
  • [65] van Loon P., Olsson L., Klintbom P., 2019, LCA guidelines for electric vehicles, Swedish Energy Agency, Stockholm.
  • [66] Vilathgamuwa M., Mishra Y., Yigitcanlar T., Bhaskar A., Wilson C., 2022, Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure, Sustainability, 14(5), 2796, DOI: 10.3390/su14052796.
  • [67] W kierunku zeroemisyjnej mobilności. Raport 2020, 2020, PZPM & ACEA, Warszawa.
  • [68] Wappelhorst S., 2021a, On the electrification path: Europe’s progress towards clean transportation, Consulting report, European Alternative Fuels Observatory, https://theicct.org/publications/electrification-path-europe-mar2021 [access: 15.09.2022].
  • [69] Wappelhorst S., 2021b, Small but mighty: The Netherlands’ leading role in electric vehicle adoption, ICCT, https://theicct.org/blog/staff/netherlands-ev-leader-feb2021 [access: 15.09.2022].
  • [70] Weber J., 2022, Bewegende Zeiten: Mobilität der Zukunft, 2020th ed., Springer, Berlin-Heidelberg.
  • [71] Weber K. M., Rohracher H., 2012, Legitimizing research, technology and innovation policies for transformative change: Combining insights from innovation systems and multi-level perspective in a comprehensive ‘failures’ framework, Research Policy, 41(6), 1037-1047, DOI: 10.1016/j.respol.2011.10.015.
  • [72] White Paper. Roadmap to a Single European Transport Area – Towards a Competitive and Resource Efficient Transport System, 2011, COM(2011) 144 final, Brussels.
  • [73] Wojewódzka-Król K., Załoga E. (red.), 2016, Transport. Nowe wyzwania, PWN, Warszawa.
  • [74] Wołek M., Wolański M., Bartłomiejczyk M., Wyszomirski O., Grzelec K., Hebel K., 2021, Ensuring Sustainable Development of Urban Public Transport: A Case Study of the Trolleybus System in Gdynia and Sopot (Poland), Journal of Cleaner Production, 279, DOI: 10.1016/j.jclepro.2020.123807.
  • [75] Woo J., Choi H., Ahn J., 2017, Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: a global perspective, Transportation Research, Part D: Transport and Environment, 51, 340-350, DOI: 10.1016/j.trd.2017.01.005.
  • [76] Yu A., Wei Y., Chen W., Peng N., Peng L., 2018, Life cycle environmental impacts and carbon emissions: a case study of electric and gasoline vehicles in China, Transportation Research, Part D: Transport and Environment, 65, 409-420, DOI: 10.1016/j.trd.2018.09.009.
  • [77] Załoga E., 2013, Trendy w transporcie lądowym Unii Europejskiej, US, Szczecin.
  • [78] Zhao X., Ke Y., Zuo J., Xiong W., Wu P., 2020, Evaluation of sustainable transport research in 2000-2019, Journal of Cleaner Production, 256(2), 120404, DOI: 10.1016/j.jclepro.2020.120404.
  • [79] Zuo T., Wei H., Chen N., 2021, Incorporating low-stress bicycling connectivity into expanded transit service coverage, Transportation Research Record, 2675(4), DOI: 10.1016/j.cities.2020.102614.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87d8434b-71c8-4d0d-8286-51701e2b2568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.