PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kowalencyjne szkielety organiczne : otrzymywanie, właściwości, zastosowanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Covalent organic frameworks : preparation, properties, application
Języki publikacji
EN
Abstrakty
EN
Covalent organic frameworks (COFs) are a novel and unique crystalline porous organic polymers formed by the reversible condensation of building units containing light elements and linked by strong covalent bonds. Covalent organic frameworks consist of linkers (building units) and chemical bonds formed between two building units. By carefully selecting the appropriate linkers and bonds, it is possible to create covalent organic frameworks with distinct features. This work provides a concise overview of covalent organic frameworks, including their structural, surface, optical, and electronic properties. The preparation strategies most commonly employed for COFs are also presented, along with relevant examples. The potential applications of covalent frameworks in various fields such as: photocatalysis, medicine, gas separation and storage, photovoltaics and sensors are also discussed, highlighting the need for further development of this important class of materials.
Rocznik
Strony
219--241
Opis fizyczny
Bibliogr. 111 poz., rys., tab.
Twórcy
  • Katedra Technologii Środowiska, Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Katedra Technologii Środowiska, Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] A.P. Côté, H.M. El-Kaderi, H. Furukawa, J.R. Hunt, O.M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914.
  • [2] Y. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev., 2020, 49, 2852.
  • [3] Z. Wang, C. Wang, Y. Chen, L. Wei, Z. Wang, C. Wang, Y. Chen, L. Wei, Adv. Mater. Technol., 2023, 8, 2201828.
  • [4] Y.N. Gong, X. Guan, H.L. Jiang, Coord. Chem. Rev., 2023, 475, 214889.
  • [5] Y. Fan, M. Chen, N. Xu, K. Wang, Q. Gao, J. Liang, Y. Liu, Front. Chem., 2022, 10, 942492.
  • [6] M.X. Wu, Y.W. Yang, Chin. Chem. Lett., 2017, 28, 1135.
  • [7] M. Moharramnejad, R.E. Malekshah, Z. Salariyeh, H. Saremi, M. Shahi, A. Ehsani, Inorg. Chem. Commun., 2023, 153, 110888.
  • [8] S. Aydin, C. Altintas, S. Keskin, ACS Appl. Mater. Interfaces, 2022, 14, 21738.
  • [9] X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev., 2019, 48, 5266.
  • [10] C. Wu, Y. Liu, H. Liu, C. Duan, Q. Pan, J. Zhu, F. Hu, X. Ma, T. Jiu, Z. Li, Y. Zhao, J. Am. Chem. Soc., 2018, 140, 10016.
  • [11] Y. Deng, Z. Zhang, P. Du, X. Ning, Y. Wang, D. Zhang, J. Liu, S. Zhang, X. Lu, Angew. Chem. Int. Ed., 2020, 59, 6082.
  • [12] X. Lin, X. Ma, Y. He, S. Li, W. Chen, L. Li, Chem. Euro. J., 2023, e202303505.
  • [13] S. Chen, Y. Zhu, D. Xu, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Chem. Electro. Chem., 2018, 5, 717.
  • [14] C.C. Li, M.Y. Gao, X.J. Sun, H.L. Tang, H. Dong, F.M. Zhang, Appl. Catal. B, 2020, 266, 118586.
  • [15] Z. Wang, J. Li, S. Liu, G. Shao, X. Zhao, Nanoscale, 2022, 14, 16944.
  • [16] S. Dong, Z. Tan, Q. Chen, G. Huang, L. Wu, J. Bi, J. Colloid Interface Sci., 2022, 628, 573.
  • [17] C. Altintas, I. Erucar, S. Keskin, CrystEngComm., 2022, 24, 7360.
  • [18] S. Xiong, F. Lv, N. Yang, Y. Zhang, Z. Li, Y. Wang, J. Chu, R. Zhang, Y. Dang, N. Yan, J. Xu, Sol. Energy Mater. and Sol. Cells, 2022, 247, 111969.
  • [19] F. Zanganeh, Y. Yamini, M.M. Khataei, M. Shirani, Talanta Open, 2023, 7, 100183.
  • [20] J. Huang, X. Liu, W. Zhang, Z. Liu, H. Zhong, B. Shao, Q. Liang, Y. Liu, Q. He, Chem. Eng. J., 2021, 404, 127136.
  • [21] X.X. Luo, X.T. Wang, E.H. Ang, K.Y. Zhang, X.X. Zhao, L. Hong-Yan, X.L. Wu, Chem. Euro. J., 2023, 29, e202202723.
  • [22] R. Xue, Y.S. Liu, W. Yang, G.Y. Yang, Coord. Chem. Rev., 2024, 501, 215577.
  • [23] P.J. Waller, S.J. Lyle, T.M. Osborn Popp, C.S. Diercks, J.A. Reimer, O.M. Yaghi, J. Am. Chem. Soc., 2016, 138, 15519.
  • [24] X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J.J. Urban, J. Ciston, E.M. Chan, Y. Liu, Nat. Commun. 2018 9:1, 2018, 9, 1.
  • [25] P. Verma, J.J.M. Le Brocq, R. Raja, Molecules, 2021, Vol. 26, Page 4181, 2021, 26, 4181.
  • [26] F.L. Oliveira, P.M. Esteves, ArXiv Prerint, 2023, 2310.14822.
  • [27] Z.D. Li, H.Q. Zhang, X.H. Xiong, F. Luo, J. Solid. State. Chem., 2019, 277, 484.
  • [28] C. Dai, T. He, L. Zhong, X. Liu, W. Zhen, C. Xue, S. Li, D. Jiang, B. Liu, Adv. Mater. Interfaces, 2021, 8, 2002191.
  • [29] O.M. Yaghi, M.J. Kalmutzki, C.S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks, Wiley-VCH,Weinheim, 2019.
  • [30] Y. Song, Q. Sun, B. Aguila, S. Ma, Adv. Sci., 2019, 6, 1801410.
  • [31] Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Natl. Sci. Rev., 2020, 7, 170.
  • [32] T.X. Wang, H.P. Liang, D.A. Anito, X. Ding, B.H. Han, J. Mater. Chem. A, 2020, 8, 7003.
  • [33] Y. Qiao, X. Zeng, H. Wang, J. Long, Y. Tian, J. Lan, Y. Yu, X. Yang, Materials, 2023, 16,2240.
  • [34] F.C. Hendriks, D. Valencia, P.C.A. Bruijnincx, B.M. Weckhuysen, Phys. Chem. Chem. Phys., 2017, 19, 1857.
  • [35] R.K. Sharma, P. Yadav, M. Yadav, R. Gupta, P. Rana, A. Srivastava, R. Zbořil, R.S. Varma, . Antonietti, M.B. Gawande, Mater. Horiz., 2020, 7, 411.
  • [36] W. Zhang, L. Chen, S. Dai, C. Zhao, C. Ma, L. Wei, M. Zhu, S.Y. Chong, H. Yang, L. Liu, Y. Bai, M. Yu, Y. Xu, X.W. Zhu, Q. Zhu, S. An, R.S. Sprick, M.A. Little, X. Wu, S. Jiang, Y. Wu, Y.B. Zhang, H. Tian, W.H. Zhu, A.I. Cooper, Nat. 2022 604:7904, 2022, 604, 72.
  • [37] Y. Song, Q. Sun, B. Aguila, S. Ma, Adv. Sci., 2019, 6, 1801410.
  • [38] H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O’Keeffe, O.M. Yaghi, Sci., 2007, 316, 268.
  • [39] I. K. Kinoti, J. Ogunah, C. Muturia M’Thiruaine, J.M. Marangu, J. Chem., 2022, 2022, 4250299.
  • [40] Y. Jin, Y. Hu, W. Zhang, Nat. Rev. Chem. 2017 1:7, 2017, 1, 1.
  • [41] Y. Qin, X. Zhu, R. Huang, Biomater Sci., 2023, 11, 6942.
  • [42] J.L. Segura, M.J. Mancheño, F. Zamora, Chem. Soc. Rev., 2016, 45, 5635.
  • [43] A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Sci., 2005, 310, 1166.
  • [44] Q. Guan, G.B. Wang, L. Le Zhou, W.Y. Li, Y. Bin Dong, Nano. Adv., 2020, 2, 3656.
  • [45] S.Y. Ding, W. Wang, Chem. Soc. Rev., 2012, 42, 548.
  • [46] Y. Qin, X. Zhu, R. Huang, Biomater Sci., 2023, 11, 6942.
  • [47] S. Cao, B. Li, R. Zhu, H. Pang, Chem. Eng. J., 2019, 355, 602.
  • [48] J. You, Y. Zhao, L. Wang, W. Bao, J. Clean Prod., 2021, 291, 125822.
  • [49] S. Koo, D.W. Kang, CrystEngComm., 2023, 25, 5994.
  • [50] S.T. Yang, J. Kim, H.Y. Cho, S. Kim, W.S. Ahn, RSC Adv., 2012, 2, 10179.
  • [51] S.X. Gan, C. Jia, Q.Y. Qi, X. Zhao, Chem. Sci., 2022, 13, 1009.
  • [52] D. Ozer, Adv. in Sc., Tech. and Inn., Springer Nat., 2021, 23–39.
  • [53] N. Brown, Z. Alsudairy, R. Behera, F. Akram, K. Chen, K. Smith-Petty, B. Motley, S. Williams, W. Huang, C. Ingram, X. Li, Green Chem., 2023, 25, 6287.
  • [54] S.T. Emmerling, L.S. Germann, P.A. Julien, I. Moudrakovski, M. Etter, T. Friščić, R.E. Dinnebier, B. V. Lotsch, Chem, 2021, 7, 1639.
  • [55] B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc., 2013, 135, 5328.
  • [56] R.E. Morris, Chem. Commun., 2009, 21, 2990.
  • [57] J. Maschita, T. Banerjee, G. Savasci, F. Haase, C. Ochsenfeld, B. V. Lotsch, Angew. Chem. Int. Ed., 2020, 59, 15750.
  • [58] X. Guan, Y. Ma, H. Li, Y. Yusran, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, J. Am. Chem. Soc., 2018, 140, 4494.
  • [59] B. Díaz de Greñu, J. Torres, J. García-González, S. Muñoz-Pina, R. de los Reyes, A.M. Costero, P. Amorós, J. V. Ros-Lis, ChemSusChem., 2021, 14, 208.
  • [60] L.K. Ritchie, A. Trewin, A. Reguera-Galan, T. Hasell, A.I. Cooper, Micropor. Mesopor. Mat., 2010, 132, 132.
  • [61] C.J. Wu, M.Z. Shao, Y. Geng, Y. Bin Dong, Chem. Cat. Chem., 2023, 15, e202300244.
  • [62] C.J. Wu, X.Y. Li, T.R. Li, M.Z. Shao, L.J. Niu, X.F. Lu, J.L. Kan, Y. Geng, Y. Bin Dong, J. Am. Chem. Soc., 2022, 144, 18750.
  • [63] S. Kim, C. Park, M. Lee, I. Song, J. Kim, M. Lee, J. Jung, Y. Kim, H. Lim, H.C. Choi, Adv. Funct. Mater., 2017, 27, 1700925.
  • [64] M. Zhang, J. Chen, S. Zhang, X. Zhou, L. He, V.S. Matthew, M. Yuan, M. Zhang, L. Chen, X. Dai, F. Ma, J. Wang, J. Hu, G. Wu, X. Kong, R. Zhou, T.E. Albrecht-Schmitt, Z. Chai, S. Wang, J. Radiat. Res. and Radiat. Proc., 2020, 38, 9169.
  • [65] D.D. Medina, J.M. Rotter, Y. Hu, M. Dogru, V. Werner, F. Auras, J.T. Markiewicz, P. Knochel, T. Bein, J. Am. Chem. Soc., 2015, 137, 1016.
  • [66] J.F. Dienstmaier, A.M. Gigler, A.J. Goetz, P. Knochel, T. Bein, A. Lyapin, S. Reichlmaier, W.M. Heckl, M. Lackinger, ACS Nano, 2011, 5, 9737.
  • [67] Y. Peng, W.K. Wong, Z. Hu, Y. Cheng, D. Yuan, S.A. Khan, D. Zhao, Chem. Mater., 2016, 28, 5095.
  • [68] A. Fujishima, K. Honda, Nat. 1972 238:5358, 1972, 238, 37.
  • [69] W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, Environ. Sci. Pollut. Res. Int., 2020, 27, 2522.
  • [70] C.S. Diercks, Y. Liu, K.E. Cordova, O.M. Yaghi, Nat. Mater. 2018 17:4, 2018, 17, 301.
  • [71] V.S. Vyas, V.W.H. Lau, B. V. Lotsch, Chem. Mater., 2016, 28, 5191.
  • [72] H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev., 2020, 49, 4135.
  • [73] W.T. Chung, I.M.A. Mekhemer, M.G. Mohamed, A.M. Elewa, A.F.M. EL-Mahdy, H.H. Chou, S.W. Kuo, K.C.W. Wu, Coord. Chem. Rev., 2023, 483, 215066.
  • [74] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789.
  • [75] X. Wang, L. Chen, S.Y. Chong, M.A. Little, Y. Wu, W.H. Zhu, R. Clowes, Y. Yan, M.A. Zwijnenburg, R.S. Sprick, A.I. Cooper, Nat. Chem., 2018, 10, 1180.
  • [76] H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J.P. Giesy, J. Hazard. Mater, 2019, 369, 494.
  • [77] H. Dong, X. Bin Meng, X. Zhang, H.L. Tang, J.W. Liu, J.H. Wang, J.Z. Wei, F.M. Zhang, L.L. Bai, X.J. Sun, Chem. Eng. J., 2020, 379, 122342.
  • [78] M.Y. Gao, C.C. Li, H.L. Tang, X.J. Sun, H. Dong, F.M. Zhang, J. Mater. Chem. A, 2019, 7, 20193.
  • [79] V.S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, B. V. Lotsch, Nat. Commun. 2015 6:1, 2015, 6, 1.
  • [80] W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc., 2019, 141, 7615.
  • [81] S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc., 2018, 140, 14614.
  • [82] Z. Dong, L. Zhang, J. Gong, Q. Zhao, Chem. Eng. J., 2021, 403, 126383.
  • [83] Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc., 2015, 137, 8352.
  • [84] M. Li, Y. Peng, F. Yan, C. Li, Y. He, Y. Lou, D. Ma, Y. Li, Z. Shi, S. Feng, New J. Chem., 2021, 45, 3343.
  • [85] L. Akyuz, Micropor. Mesopor. Mat., 2020, 294, 109850.
  • [86] L. Bai, S.Z.F. Phua, W.Q. Lim, A. Jana, Z. Luo, H.P. Tham, L. Zhao, Q. Gao, Y. Zhao, Chem. Commun., 2016, 52, 4128.
  • [87] S. Chen, T. Sun, M. Zheng, Z. Xie, Adv. Funct. Mater., 2020, 30, 2004680.
  • [88] L. Zhang, S. Wang, Y. Zhou, C. Wang, X.Z. Zhang, H. Deng, Angew. Chem. Int. Ed., 2019, 58, 14213.
  • [89] L.L. Yang, L. Zhang, S.C. Wan, S. Wang, Z.Z. Wu, Q.C. Yang, Y. Xiao, H. Deng, Z.J. Sun, Adv. Funct. Mater., 2021, 31, 2103056.
  • [90] L. Le Zhou, Q. Guan, W. Zhou, J.L. Kan, Y. Bin Dong, Chem. Sci., 2023, 14, 3642.
  • [91] S. Zhang, S. Xia, L. Chen, Y. Chen, J. Zhou, Adv. Sci., 2023, 10, 2206009.
  • [92] C. Zhang, J. Guo, X. Zou, S. Guo, Y. Guo, R. Shi, F. Yan, Adv. Healthc. Mater., 2021, 10, 2100775.
  • [93] J. Liang, W. Li, J. Chen, X. Huang, Y. Liu, X. Zhang, W. Shu, B. Lei, H. Zhang, J. Mater. Chem. A., 2022, 451, 23384.
  • [94] H. Zhang, R. Peng, Y. Luo, Q. Cui, F. Gong, L. Li, ACS Appl Bio. Mater., 2022, 5, 3115.
  • [95] J.Y. Zeng, X.S. Wang, B.R. Xie, M.J. Li, X.Z. Zhang, Angew. Chem. Int. Ed., 2020, 59, 10087.
  • [96] P. Wang, F. Zhou, C. Zhang, S.Y. Yin, L. Teng, L. Chen, X.X. Hu, H.W. Liu, X. Yin, X.B. Zhang, Chem. Sci., 2018, 9, 8402.
  • [97] Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun., 2014, 50, 13825.
  • [98] S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek,
  • [99] R. Ge, D. Hao, Q. Shi, B. Dong, W. Leng, C. Wang, Y. Gao, J. Chem. Eng. Data., 2016, 61, 1904.
  • [100] H. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J. Am. Chem. Soc., 2018, 140, 10094.
  • [101] K. Duan, J. Wang, Y. Zhang, J. Liu, J Membr. Sci., 2019, 572, 588.
  • [102] J. Lan, D. Coa, W. Wang, Langmuir., 2010, 26, 220.
  • [103] O.F. Altundal, Z.P. Haslak, S. Keskin, Ind. Eng. Chem. Res., 2021, 60, 12999.
  • [104] M. Calik, F. Auras, L.M. Salonen, K. Bader, I. Grill, M. Handloser, D.D. Medina, M. Dogru, . Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc., 2014, 136, 17802.
  • [105] P.H. Chang, M.C. Sil, K.S.K. Reddy, C.H. Lin, C.M. Chen, ACS Appl. Mater. Inter., 2022, 14, 25466.
  • [106] D.D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Döblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano, 2014, 8, 4042.
  • [107] B. Xu, S. Li, H. Jiao, J. Yin, Z. Liu, W. Zhong, J. Mater. Chem. A, 2020, 8, 3865.
  • [108] A.M. Evans, N.P. Bradshaw, B. Litchfield, M.J. Strauss, B. Seckman, M.R. Ryder, I. Castano, C. Gilmore, N.C. Gianneschi, C.R. Mulzer, M.C. Hersam, W.R. Dichtel, Adv. Mater., 2020, 32, 2004205.
  • [109] J. Choi, T. Kim, H. Li, H.T. Jung, D. Zhao, ACS Appl. Mater. Interfaces, 2023, 15, 44119.
  • [110] H. Guo, L. Sun, M. Yang, M. Wang, N. Wu, T. Zhang, J. Zhang, F. Yang, W. Yang, Anal. Methods, 2021, 13, 4994.
  • [111] K. Niu, Y. Zhang, J. Chen, X. Lu, ACS Sens., 2022, 7, 3551.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87d7d469-648c-4847-b55d-57b10190d34e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.