PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two imperfectly bonded half-planes with an arbitrary inclusion subject to linear eigenstrains in anti-plane shear

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytic solution to the anti-plane problem of an arbitrary inclusion within an elastic bimaterial under the premise of linear eigenstrains is developed. The bonding along the bimaterial interface is considered to be homogeneously imperfect. The boundary value problem is reduced to a single nonhomogeneous first order differential equation for an analytic function prescribed in the lower half-plane where the inclusion is located. The general solution is given in terms of the imperfect interface parameter and an auxiliary function constructed from the conformal mapping function. In particular, the solution obtained for a circular inclusion demonstrates that the imperfect interface together with the prescribed linear eigenstrains have a pronounced effect on the induced stress field within the inclusion and show a strong non-uniform behaviour especially when the inclusion is near the imperfect interface. Specific solutions are derived in a closed form and verified with existing solutions.
Rocznik
Strony
615--631
Opis fizyczny
Bibliogr. 30 poz., rys. kolor.
Twórcy
autor
  • Department of Mechanical and Manufacturing Engineering, Universityof Calgary, Calgary, AB, Canada, T2N-1N4
Bibliografia
  • 1. K. Aderogeba, On eigenstresses in dissimilar media, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 35, 281–292, 1977.
  • 2. Y. Chen, Closed-form solution for eshelby’s elliptic inclusion in antiplane elasticity, Zeitschrift fur angewandte Mathematik und Physik ZAMP, 64, 1797–1805, 2013.
  • 3. Y. Chiu, On the stress field due to initial stresses in a cuboid surrounded by an infinite elastic space, ASME Journal of Applied Mechanics, 44, 4, 587–590, 1977.
  • 4. A. England, Complex Variable Methods in Elasticity, Wiley-Interscience, London, 1971. 630 L. J. Sudak
  • 5. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society, London, A 241, 5, 376–396, 1957.
  • 6. L. Freund, The mechanics of electronic materials, Zeitschrift fur angewandte Mathematik and Physik ZAMP, 37, 185–196, 2000.
  • 7. X. Gao, M. Liu, Strain gradient solution for the eshelby-type polyhedral inclusion problem , Journal of Mechanics and Physics of Solids, 60, 2, 261–276, 2012.
  • 8. F. Glas, Analytical calculation of the strain field of single and periodic misfitting polygonal wires in a half-space, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, A 82, 13, 2591–2608, 2001.
  • 9. F. Glas, Elastic relaxation of truncated pyramidal quantum dots and quantum wires in a half space: an analytical calculation, Journal of Applied Physics, 90, 7, 3232, 2001.
  • 10. F. Glas, Elastic relaxation of a truncated circular cylinder with uniform dilatational eigenstrains in a half space, Physica Status Solidi, (b) 237, 2, 599–610, 2003.
  • 11. M. Kamali, H. Shodja, N. Masoudvaziri, A screw dislocation near a damaged arbitrary inhomogeneity-matrix interface, International Journal of Damage Mechanics, https://doi.org/10.1177/1056789519842371, 2019.
  • 12. Y. Lee, W. Zou, H. Ren, Eshelby’s problem of inclusion with arbitrary shape in an isotropic elastic hafl-plane, International Journal of Solids and Structures, 81, 399–410, 2016.
  • 13. S. Liu, X. Jin, Z.Wang, L. Keer, Q.Wang, Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on fft, International Journal of Plasticity, 35, 135–154, 2012.
  • 14. G. Nie, C. Chan, F. Shin, Non-unifom eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots, International Journal of Solids and Structures, 44, 3573–3593, 2007.
  • 15. H. Nozaki, M. Taya, Elastic fields in a polyhedral inclusion with uniform eigenstrain and related problems, ASME Journal of Applied Mechanics, 68, 3, 441–452, 2001.
  • 16. M. Rahman, The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain , ASME Journal of Applied Mechanics, 69, 593–601, 2002.
  • 17. C. Ru, Analytic solution for eshelby’s problem of an incluison of arbitrary shape in an plane or half-plane, ASME Journal of Applied Mechanics, 66, 315–322, 1999.
  • 18. C. Ru, P. Schiavone, A. Mioduchowski, Elastic fields in two jointed half-planes with an inclusion of arbitrary shape, Zeitschrift fur angewandte Mathematik and Physik ZAMP, 52, 18–32, 2001.
  • 19. P. Sharma, R. Sharma, On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational gaussian and exponential eignestrains, ASME Journal of Applied Mechanics, 70, 418–425, 2003.
  • 20. H. Shodja, B. Shokrolahi-Zadeh, Ellipsoidal domains: Piecewise nonuniform and impotent eigenstrain fields, Journal of Elasticity, 86, 1–18, 2007.
  • 21. O. Strack, A. Verruijt, A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane, International Journal for Numerical and Analitical Methods in Geomechanics, 26, 12, 1235–1252, 2002.
  • 22. L. Sudak, C. Ru, P. Schiavone, A. Mioduchowski, A circular inclusion with inhomogeneously imperfect inteface in plane elasticity, Journal of Elasticity, 55, 19–41, 1999.
  • 23. L. Sudak, X. Wang, An irregular-shaped inclusion with imperfect interface in antiplane elasticity, Acta Mechanica, 224, 9, 2009–2023, 2013.
  • 24. Y. Sun, Y. Peng, Analytic solution for the problems of an inclusion of arbitrary shape embedded in half plane, Applied Mathematics of Computation, 140, 1, 105–113, 2003.
  • 25. S. Trotta, F. Marmo, L. Rosati, Evaluation of the Eshelby tensor for polygonal inclusions , Composite Part B: Engineering, 115, 170–185, 2017.
  • 26. X. Wang, L. Sudak, C. Ru, Elastic fields in two imperfectly bonded half-planes with a thermal inclusion of arbitrary shape, Zeitschrift fur angewandte Mathematik and Physik ZAMP, 58, 488–509, 2007.
  • 27. Z. Wang, H. Yu, Q. Wang, Analytical solutions for elastic fields caused by eigenstrains in two jointed and perfectly bonded half-spaces and related problems, International Journal of Plasticity, 76, 1–28, 2016.
  • 28. L. Wu, The elastic field induced by a hemisphere inclusion in the half space, Acta Mechanica Sinica, 19, 3, 925–932, 2003.
  • 29. H. Yu, S. Sanday, Elastic field in jointed semi-infinite solids with an inclusion, Proceedings of the Royal Society of London, A. 434, 521–530, 1991.
  • 30. K. Zhou, K. Hoh, X. Wang, L.M. Keer, J.H.L. Pang, B. Song, Q.J. Wang, A review of recent works on inclusions, Mechanics of Materials, 60, 144–158, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87d2d5b5-a9f4-4b14-af9e-e3cd365bfc44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.