PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of 3D printing technology in the aviation industry on an example of numerical experimental stress state analysis of unmanned aerial vehicle wing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of static tests performed on the primary support structures of a TWISST-ter unmanned aircraft constructed using additive manufacturing techniques commonly known as 3D printing. The primary goal of the experiment was determining the material effort of the structure in order to assess the feasibility of such an engineering solution in terms of material mechanics. Considering the fact that the properties of 3D printed elements are not widely known, both destructive experimental methods and finite element methods were used. During the experimental trails, the ARAMIS deformation measurement system, based on digital three-dimensional image correlation, was used. The results of this experiment allowed for the calibration of the numerical model as achieving convergence with experimentally determined strain fields. This approach ensured the correctness of the numerical determined stress state. Based on the results of the study, the necessary design improvements were implemented and a general conclusion was formed regarding of the numerical analysis of structures made through 3D printing.
Słowa kluczowe
EN
Twórcy
autor
  • Rzeszow University of Technology Department of Aircrafts and Aircrafts Engine Powstancow Warszawy Street 8 (L-H30/7), 35-959 Rzeszow, Poland
autor
  • Rzeszow University of Technology Department of Aircrafts and Aircrafts Engine Powstancow Warszawy Street 8 (L-H30/7), 35-959 Rzeszow, Poland
Bibliografia
  • [1] ARAMIS: User manual, GOM mbH, 2010.
  • [2] Furyk-Grabowska, K., Wyszyński, D., Analysis of the selected problems of 3D printing using the FFF method, Stal Metale & Nowe Technologie, 9-10, pp.128-131, 2016.
  • [3] Łyżwa, A., Ways to increasing performance of FFF 3D printing method, Mechanik, 12, pp.1900-1901, 2016.
  • [4] Schrenk, O., A simple approximation method for obtaining the spanwise lift distribution, NACA TM 948, 1940.
  • [5] Skarbiński, A., Stafiej, W., Projektowanie i konstrukcja szybowców, WKŁ, 1965.
  • [6] Stava, O., Vanek, J., Benes, B., Carr, N., Mech, R., Stress Relief – Improving Structural Strength of 3D Printable Objects, 2012.
  • [7] Szmidt, A., Rębosz-Kurdek, A., New approaches of improving FDM/FFF printing techology, Mechanik, 3, pp. 258-261, 2017.
  • [8] Vaezi, M., Chua, C. K., Effects of layer thickness and binder saturation level parameters on 3d printing process, The International Journal of Advanced Manufacturing Technology, Vol. 53, Iss. 1, pp 275-284, 2011.
  • [9] Zafar, A., Digital image correlation, CEE 498KUC – Experimental methods in Structures and Materials, 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87c80246-ba59-424e-8954-7ffbd475a587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.