PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of oat β-glucan on in vitro digestion characteristics of set-type yogurt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the study was to evaluate the effect of added 0.3% (w/w) oat β-glucan (OG) in set-type yogurt on its protein digestion using an in vitro gastrointestinal model. During gastric digestion phase, the amount of soluble proteins and peptides increased to 25% and 40% for control yogurt (yogurt without OG) and 0.3% OG yogurt, respectively. Buccal digestion has little effect on the structure of yogurts, while large spherical vesicles were formed for both control yogurt and 0.3% OG yogurt after gastric digestion. The presence of 0.3% OG promoted the hydrolysis of yogurt in the gastric digestion phase and caused higher antioxidant activity. Compared with that of control yogurt, the inhibition of cholesterol solubility of 0.3% OG yogurt showed no differences after buccal digestion but significantly higher after gastrointestinal digestion (21.3% for gastric and 22.7% for intestinal digestion). Overall, this study enhances the understanding of digestion characteristics of 0.3% OG-fortified set-type yogurt and provides a theoretical basis for the development of this kind of dairy products.
Twórcy
autor
  • Department of Milk and Meat Technology, Sumy National Agrarian University, 160 Herasima Kondratieva St., 40021, Sumy, Ukraine
  • Department of Food Science, Henan Institute of Science and Technology, Hualan Rd., 453003, Xinxiang, China
autor
  • Department of Food Science, Henan Institute of Science and Technology, Hualan Rd., 453003, Xinxiang, China
autor
  • Department of Food Science, Henan Institute of Science and Technology, Hualan Rd., 453003, Xinxiang, China
  • Department of Milk and Meat Technology, Sumy National Agrarian University, 160 Herasyma Kondratjeva str., 40021, Sumy, Ukraine
Bibliografia
  • [1] A. Jahan-Mihan, B.L. Luhovyy, D. El Khoury, G. Harvey Anderson, Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract, Nutrients. 3 (2011) 574–603. https://doi.org/10.3390/nu3050574.
  • [2] M. Nilsson, J.J. Holst, I.M.E. Björck, Metabolic effects of amino acid mixtures and whey protein in healthy subjects: Studies using glucose-equivalent drinks, Am. J. Clin. Nutr. 85 (2007) 996–1004. https://doi.org/10.1093/ajcn/85.4.996.
  • [3] I.A. Abd El-Gawad, E.M. El-Sayed, S.A. Hafez, H.M. El-Zeini, F.A. Saleh, The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet, Int. Dairy J. 15 (2005) 37–44. https://doi.org/10.1016/j.idairyj.2004.06.001.
  • [4] M.C. Bertolami, A.A. Faludi, M. Batlouni, Evaluation of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia, Eur. J. Clin. Nutr. 53 (1999) 97–101. https://doi.org/10.1038/sj.ejcn.1600683.
  • [5] J.W. Anderson, S.E. Gilliland, Effect of Fermented Milk (Yogurt) Containing Lactobacillus Acidophilus L1 on Serum Cholesterol in Hypercholesterolemic Humans, J. Am. Coll. Nutr. 18 (1999) 43–50. https://doi.org/10.1080/07315724.1999.10718826.
  • [6] L. Rinaldi, L.E. Rioux, M. Britten, S.L. Turgeon, Invitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan, Int. Dairy J. 46 (2015) 39–45. https://doi.org/10.1016/j.idairyj.2014.09.005.
  • [7] Z. Wu, J. Ming, R. Gao, Y. Wang, Q. Liang, H. Yu, G. Zhao, Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan, J. Agric. Food Chem. 59 (2011) 10737–10746. https://doi.org/10.1021/jf202722w.
  • [8] T.M.S. Wolever, S.M. Tosh, A.L. Gibbs, J. Brand-Miller, A.M. Duncan, V. Hart, B. Lamarche, B.A. Thomson, R. Duss, P.J. Wood, Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial, Am. J. Clin. Nutr. 92 (2010) 723–732. https://doi.org/10.3945/ajcn.2010.29174.
  • [9] S. Panahi, A. Ezatagha, V. Vuksan, S. Panahi, A. Ezatagha, F. Temelli, T. Vasanthan, β-Glucan from Two Sources of Oat Concentrates Affect Postprandial Glycemia in Relation to the Level of Viscosity, J. Am. Coll. Nutr. 26 (2007) 639–644. https://doi.org/10.1080/07315724.2007.10719641.
  • [10] Z. Fan, L. HuiPing, L. XiaoQing, Z. ChenPing, W. Yu, X. JiaoJiao, Effect of oat bran β-glucan on hypoglycemic and antioxidant., J. Food Saf. Qual. 6 (2015) 2131–2137. http://www.chinafoodj.com/%0Ahttps://www.cabdirect.org/cabdirect/abstract/20153258698.
  • [11] S. O’Connor, S. Chouinard-Castonguay, C. Gagnon, I. Rudkowska, Prebiotics in the management of components of the metabolic syndrome, Maturitas. 104 (2017) 11–18. https://doi.org/10.1016/j.maturitas.2017.07.005.
  • [12] N. Mishra, Cereal β Glucan as a Functional Ingredient, in: Innov. Food Technol., Springer Singapore, Singapore, 2020: pp. 109–122. https://doi.org/10.1007/978-981-15-6121-4_8.
  • [13] Z.S. Ladjevardi, M.S. Yarmand, Z. Emam-Djomeh, A. Niasari-Naslaji, Physicochemical properties and viability of probiotic bacteria of functional synbiotic camel yogurt affected by oat β-glucan during storage, J. Agric. Sci. Technol. 18 (2016) 1233–1246.
  • [14] S. Aboushanab, D. Vyrova, I. Selezneva, Characterization of low- and non-fat yogurt manufactured with addition of beta-glucanas a dietary supplement, in: AIP Conf. Proc., 2018: p. 020003. https://doi.org/10.1063/1.5055076.
  • [15] M.N.G. Ibrahim, I.S. Selezneva, The symbiotic effect of oat β-glucan enriching bio-low fat yogurt, Process. Food Prod. Equip. (2019) 111–116. https://doi.org/10.17586/2310-1164-2019-12-4-111-116.
  • [16] X. Qu, Y. Nazarenko, W. Yang, Y. Nie, Y. Zhang, B. Li, Effect of oat β-glucan on the rheological characteristics and microstructure of set-type yogurt, Molecules. 26 (2021) 4752. https://doi.org/10.3390/molecules26164752.
  • [17] S.J. Hur, B.O. Lim, E.A. Decker, D.J. McClements, In vitro human digestion models for food applications, Food Chem. 125 (2011) 1–12. https://doi.org/10.1016/j.foodchem.2010.08.036.
  • [18] M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. MacIerzanka, A. MacKie, S. Marze, D.J. McClements, O. Ménard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S.J. Wickham, W. Weitschies, A. Brodkorb, A standardised static in vitro digestion method suitable for food-an international consensus, Food Funct. 5 (2014) 1113–1124. https://doi.org/10.1039/c3fo60702j.
  • [19] A. Asensio-Grau, I. Peinado, A. Heredia, A. Andrés, In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility, LWT. 113 (2019) 108278. https://doi.org/10.1016/j.lwt.2019.108278.
  • [20] W. Yang, X. Liang, L. Xu, C. Deng, W. Jin, X. Wang, Y. Kong, M. Duan, Y. Nei, J. Zeng, B. Li, Structures, fabrication mechanisms, and emulsifying properties of self-assembled and spray-dried ternary complexes based on lactoferrin, oat β-glucan and curcumin: A comparison study, Food Res. Int. 131 (2020) 109048. https://doi.org/10.1016/j.foodres.2020.109048.
  • [21] G. Unal, S.N. El, A.. S. Akalin, N. Dinkci, Antioxidant activity of probiotic yoghurt fortified with milk protein based ingredients, Ital. J. Food Sci. 25 (2013) 63–69.
  • [22] L. Liang, X. Wu, T. Zhao, J. Zhao, F. Li, Y. Zou, G. Mao, L. Yang, In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion, Food Res. Int. 46 (2012) 76–82. https://doi.org/10.1016/j.foodres.2011.11.024.
  • [23] C. Kirana, P.F. Rogers, L.E. Bennett, M.Y. Abeywardena, G.S. Patten, Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactives, J. Agric. Food Chem. 53 (2005) 4623–4627. https://doi.org/10.1021/jf050447x.
  • [24] J. Ashraf, M. Awais, L. Liu, M.I. Khan, L.T. Tong, Y. Ma, L. Wang, X. Zhou, S. Zhou, Effect of thermal processing on cholesterol synthesis, solubilisation into micelles and antioxidant activities using peptides of Vigna angularis and Vicia faba, LWT. 129 (2020) 109504. https://doi.org/10.1016/j.lwt.2020.109504.
  • [25] M.R. Marques, R.A.M. Soares Freitas, A.C. Corrêa Carlos, É.S. Siguemoto, G.G. Fontanari, J.A.G. Arêas, Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles, Food Chem. 168 (2015) 288–293. https://doi.org/10.1016/j.foodchem.2014.07.049.
  • [26] J. Mouécoucou, C. Sanchez, C. Villaume, O. Marrion, S. Frémont, F. Laurent, L. Méjean, Effects of different levels of gum arabic, low methylated pectin and xylan on in vitro digestibility of β-lactoglobulin, J. Dairy Sci. 86 (2003) 3857–3865. https://doi.org/10.3168/jds.S0022-0302(03)73993-9.
  • [27] W.J. Lee, J.A. Lucey, Formation and physical properties of yogurt, Asian-Australasian J. Anim. Sci. 23 (2010) 1127–1136. https://doi.org/10.5713/ajas.2010.r.05.
  • [28] J.M. Jandal, Comparative aspects of goat and sheep milk, Small Rumin. Res. 22 (1996) 177–185. https://doi.org/10.1016/S0921-4488(96)00880-2.
  • [29] H. Guo, S. Lin, M. Lu, J.D.B. Gong, L. Wang, Q. Zhang, D.R. Lin, W. Qin, D.T. Wu, Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars, Int. J. Biol. Macromol. 120 (2018) 2517–2522. https://doi.org/10.1016/j.ijbiomac.2018.09.023.
  • [30] S.M.V. Mejía, A. de Francisco, B.M. Bohrer, A comprehensive review on cereal β-glucan: extraction, characterization, causes of degradation, and food application, Crit. Rev. Food Sci. Nutr. 60 (2020) 3693–3704. https://doi.org/10.1080/10408398.2019.1706444.
  • [31] M.P. Piñero, K. Parra, N. Huerta-Leidenz, L. Arenas de Moreno, M. Ferrer, S. Araujo, Y. Barboza, Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties, Meat Sci. 80 (2008) 675–680. https://doi.org/10.1016/j.meatsci.2008.03.006.
  • [32] R. Fernandez-Orozco, M. Roca, B. Gandul-Rojas, L. Gallardo-Guerrero, DPPH-scavenging capacity of chloroplastic pigments and phenolic compounds of olive fruits (cv. Arbequina) during ripening, J. Food Compos. Anal. 24 (2011) 858–864. https://doi.org/10.1016/j.jfca.2011.05.003.
  • [33] R. Bernini, M. Barontini, V. Cis, I. Carastro, D. Tofani, R.A. Chiodo, P. Lupattelli, S. Incerpi, Synthesis and evaluation of the antioxidant activity of lipophilic phenethyl trifluoroacetate esters by in vitro ABTS, DPPH and in cell-culture DCF assays, Molecules. 23 (2018) 208. https://doi.org/10.3390/molecules23010208.
  • [34] G.A. Mensah, G.A. Roth, V. Fuster, The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond, J. Am. Coll. Cardiol. 74 (2019) 2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009.
  • [35] G.A. Roth, et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study, J. Am. Coll. Cardiol. 76 (2020) 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.
  • [36] T.Y. Wang, M. Liu, P. Portincasa, D.Q.H. Wang, New insights into the molecular mechanism of intestinal fatty acid absorption, Eur. J. Clin. Invest. 43 (2013) 1203–1223. https://doi.org/10.1111/eci.12161.
  • [37] C. Megías, J. Pedroche, M. del M. Yust, M. Alaiz, J. Girón-Calle, F. Millán, J. Vioque, Sunflower protein hydrolysates reduce cholesterol micellar solubility, Plant Foods Hum. Nutr. 64 (2009) 86–93. https://doi.org/10.1007/s11130-009-0108-1.
  • [38] M. Vourakis, G. Mayer, G. Rousseau, The role of gut microbiota on cholesterol metabolism in atherosclerosis, Int. J. Mol. Sci. 22 (2021) 8074. https://doi.org/10.3390/ijms22158074.
  • [39] R. Villette, P. KC, S. Beliard, M.F. Salas Tapia, D. Rainteau, M. Guerin, P. Lesnik, Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels, Front. Pharmacol. 11 (2020). https://doi.org/10.3389/fphar.2020.00278.
  • [40] H. Hu, S. Zhang, F. Liu, P. Zhang, Z. Muhammad, S. Pan, Role of the Gut Microbiota and Their Metabolites in Modulating the Cholesterol-Lowering Effects of Citrus Pectin Oligosaccharides in C57BL/6 Mice, J. Agric. Food Chem. 67 (2019) 11922–11930. https://doi.org/10.1021/acs.jafc.9b03731.
  • [41] S.M. Tosh, N. Bordenave, Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota, Nutr. Rev. 78 (2021) 13–20. https://doi.org/10.1093/NUTRIT/NUZ085.
  • [42] M. Jayachandran, J. Chen, S.S.M. Chung, B. Xu, A critical review on the impacts of β-glucans on gut microbiota and human health, J. Nutr. Biochem. 61 (2018) 101–110. https://doi.org/10.1016/j.jnutbio.2018.06.010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87c39002-a1f2-4d5b-ac88-846e443b4d98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.