PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspektywy i kierunki rozwoju bezołowiowych stopów lutowniczych nowej generacji oraz możliwość ich aplikacji w technologii bezołowiowego lutowania elektroniki użytkowej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Perspectives and directions of the development of new generation lead-free soldering alloys and their application possibilities in the consumer electronics lead-free soldering technology
Języki publikacji
PL EN
Abstrakty
PL
Nowe wyzwania technologiczne oraz duży potencjał ekonomiczny i komercyjny związany z opracowaniem nowej generacji stopów lutowniczych stosowanych w technologii lutowania bezołowiowego elektroniki użytkowej to temat, który zyskuje coraz szersze zainteresowanie zarówno w przemyśle elektronicznym, jak i w środowisku akademickim. Niniejsza praca stanowi przegląd oraz analizę literatury w zakresie badań nad zaawansowanymi bezołowiowymi stopami lutowniczymi nowej generacji, które potencjalnie mogłyby stanowić zamiennik dla obecnie stosowanych i drogich stopów bezołowiowych na bazie układu Sn-Ag-Cu (SAC). Na podstawie analizy literaturowej określono i scharakteryzowano główne grupy układów, które znajdują się w obszarze zainteresowania nowych materiałów – potencjalnych zamienników bezołowiowych lutowi typu SAC. Praca stanowi kompilację dotychczasowej wiedzy dotyczącej szerokiego spektrum właściwości obecnie stosowanych lutowi bezołowiowych typu SAC, jak również ich potencjalnych zamienników z układów: Sn-Zn, Bi-Sn. W pracy przedstawiono analizę porównawczą wpływu wybranych dodatków stopowych, topników i temperatury na lutowność oraz zwilżalność stopów lutowniczych w kontakcie z wybranymi typami podłoży, oraz na zmianę mikrostruktury, właściwości mechanicznych i niezawodności wytworzonych połączeń. Przegląd kończy się podsumowaniem określającym perspektywy oraz wytycza nowe kierunki rozwoju bezołowiowych stopów lutowniczych nowej generacji, które mogłyby zostać wdrożone w technologii lutowania bezołowiowego elektroniki użytkowej jako zamiennik obecnie stosowanych lutowi typu SAC.
EN
The new technological challenges and the high economical and commercial potential connected with the development of new generation soldering alloys used in the consumer electronics lead-free soldering technology is a subject which is gaining increasing interest both on the side of the electronics industry and the academic community. This study constitutes a review and analysis of the literature in the scope of investigations of new generation advanced lead-free soldering alloys which could potentially replace the currently applied, expensive, lead-free solders based on the Sn-Ag-Cu (SAC) system. On the basis of the literature analysis, the authors determined and characterized the main system groups which are within the focus of interest as new potential replacements for the SAC-type lead-free solders. The study constitutes a compilation of the current knowledge of the broad spectrum of properties of the presently applied lead-free solders of the SAC type as well as their potential replacements from the Sn-Zn and Bi-Sn systems. The work presents a comparative analysis of the effect of selected alloy additions, fluxes and temperatures on the solderability and wettability of soldering alloys in contact with selected types of substrates, as well as change in the microstructure, mechanical properties and reliability of the produced joints. The review is summed up by the description of the perspectives and new trends in the development of new generation lead-free soldering alloys which could be implemented into the consumer electronics lead-free soldering technology as replacements for the currently applied SAC-type solders.
Rocznik
Strony
233--260
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
autor
  • Instytut Odlewnictwa, Centrum Badań Wysokotemperaturowych, ul. Zakopiańska 73, 30-418 Kraków
Bibliografia
  • 1. Bukat K., H. Hackiewicz. 2007. Lutowanie bezołowiowe. Legionowo: Wydawnictwo BTC.
  • 2. Sobczak N., K. Pietrzak. 2007. Innowacyjne badania naukowe w transporcie samochodowym. W Konferencja Naukowa z okazji 55-lecia Instytutu Transportu Samochodowego, s. 21−35. Warszawa: Instytut Transportu Samochodowego.
  • 3. ASM Handbook. Volume 03 – Alloy Phase Diagrams. 1992. Materials Park, OH: ASM International.
  • 4. Tang Y., G.Y. Li, Y.C. Pan. 2013. „Influence of TiO2 nanoparticles on IMC growth in Sn-3.0Ag-0.5Cu-xTiO2 solder joints in reflow process”. Journal of Alloys and Compounds 554 (25 March 2013) : 195−203.
  • 5. „ALPHA® Vaculoy SAC300,305,350,400,405 Lead Free Wave Solder Alloy”. 2010. Technical Bulletin (2) : SM953-3, http://alphacpmd.com/Products/Soldering-Alloys.
  • 6. „ALPHA® Vaculoy SAC387,380 Lead Free Wave Solder Alloy”. 2010. Technical Bulletin (2), http://alphacpmd.com/Products/Soldering-Alloys.
  • 7. „ALPHA® Vaculoy SACX0307,0300 Lead Free Wave Solder Alloy”. 2010. Technical Bulletin ( 5) : S M989-1, http://alphacpmd.com/Products/Soldering-Alloys.
  • 8. Ma H,. J.C. Suhling. 2009. „A review of mechanical properties of lead-free solders for electronic packaging”. Journal of Materials Science 44 (5) : 1141−1158.
  • 9. Vianco P.T. 2005. Fatigue and creep of lead-free solder alloys: Fundamental properties. W Lead-free solder interconnect reliability, 67. Materials Park, OH: ASM International.
  • 10. Vianco P.T., J.A. Rejent, J.J. Martin. 2003. „The compression stress-strain behavior of Sn-Ag-Cu solder”. JOM 55 (6) : 50−55.
  • 11. Vianco P.T., J.A. Rejent. 2002. Compression deformation response of 95.5Sn-3.9Ag-0.6Cu solder. UCLA Workshop on Pb-free Electronics, http://www.seas.ucla.edu/ethinfilm/Pb-freeWorkshop/pdf/vianco.pdf.
  • 12. Vianco P.T., J.A. Rejent, A.C. Kilgo. 2003. „Time-independent mechanical and physical properties of the ternary 95.5Sn-3.9Ag-0.6Cu solder compression deformation response of 95.5Sn-3.9Ag-0.6Cu solder”. Journal of Electronic Materials 32 (3) : 142−151.
  • 13. Xiao Q., L. Nguyen, W.D. Armstrong. 2004. Aging and creep behavior of Sn3.9Ag0.6Cu solder alloy. W Proceedings of the 54th Electronic Components and Technology Conference, 1325−1332.
  • 14. Xiao Q., H.J. Bailey, W.D. Armstrong. 2004. „Aging effects on microstructure and tensile property of Sn3.9Ag0.6Cu solder alloy”. Journal of Electronic Packaging 126 (2) : 208−213.
  • 15. Xu L., J.H.L. Pang. 2005. Failure analysis of lead-free Sn-Ag-Cu solder joints for 316 I/O PBGA package. W Proceedings of the 55th Electronics Packaging and Technology Conference, 357−362.
  • 16. Puttlitz K.J., K.A. Stalter (eds.). 2004. Handbook of lead-free solder technology for microelectronic assemblies. New York: Marcel Dekker.
  • 17. Fouassier O., J.-M. Heintz, J. Chazelas, P.-M. Geffroy, J.-F. Silvain. 2006. „Microstructural evolution and mechanical properties of SnAgCu alloys”. Journal of Applied Physics 100 : 043519.
  • 18. Pang J.H.L., B.S. Xiong. 2005. „Mechanical properties for 95.5Sn-3.8Ag-0.7Cu lead-free solder alloy”. IEEE Transactions on Components, Packaging, and Manufacturing Technology 28 (4) : 830−840.
  • 19. Wiese S., A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel. 2001. Constitutive, behavior of leadfree solders vs. lead-containing solders-experiments on bulk specimens and flip-chip joints. W Proceedings of the 51th Electronic Components and Technology Conference, 890−902.
  • 20. Schubert A., H. Walter, R. Dudek, B. Michel, G. Lefranc, J. Otto, G. Mitic. 2000. Thermo-mechanical properties and creep deformation of lead-containing and lead-free solders. W International Symposium on Advanced Packaging Materials, 129−134.
  • 21. Li D., C. Liu, P. Conway. 2004. Materials behavior and intermetallics characteristics in the reaction between SnAgCu and Sn-Pb solder alloys. W Proceedings of the 54th Electronic Components and Technology Conference, 128−133.
  • 22. Lin J.K., A. De Silva, D. Frear, Y. Guo, S. Hayes, J.W. Jang, L. Li, D. Mitchell, B. Yeung, C. Zhang. 2002. „Characterization of lead-free solders and under bump metallurgies for flip-chip package”. IEEE Transactions on Components, Packaging, and Manufacturing Technology 25 (4) : 300−307.
  • 23. Harrison M.R., J.H. Vincent, H.A.H. Steen. 2001. „Lead-free reflow soldering for electronics assembly”. Soldering & Surface Mount Technology 13 (3) : 21−38.
  • 24. Rhee H., J.P. Lucas, K.N. Subramanian. 2002. „Micromechanical characterization of thermomechanically fatigued lead-free solder joints”. Journal of Materials Science: Materials in Electronics 13 (8) : 477−484.
  • 25. Chromik R.R., R.P. Vinci, S.L. Allen, M.R. Notis. 2003. „Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints”. Journal of Materials Research 18 (9) : 2251−2261.
  • 26. Allen S.L., M.R. Notis, R.R. Chromik, R.P. Vinci, D.J. Lewis, R. Schaefer. 2004. „Microstructural evolution in leadfree solder alloys: Part II. Directionally solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”. Journal of Materials Research 19 (5) : 1425−1431.
  • 27. Xiao L., J. Liu, A. Lai, L. Ye, A. Tholen. 2000. Characterization of mechanical properties of bulk lead-free solders. W International Symposium on Advanced Packaging Materials, 145−151.
  • 28. Kanchanomai C., Y. Miyashita, Y. Mutoh. 2002. „Low-cycle fatigue behavior and mechanisms of a lead-free solder 96.5Sn/3.5Ag”. Journal of Electronic Materials 31 (2) : 142−151.
  • 29. Zhu F., Z. Wang, R. Guan, H.C. Zhang. 2005. Mechanical properties of a lead-free solder alloys. W Proceedings of 2005 International Conference on Asian Green Electronics, 107−112.
  • 30. Madeni J., S. Liu, T. Siewert. Casting of lead-free solder bulk specimens with various solidification rates. NIST Pb-free data. http://www.boulder.nist.gov/div853/Publication%20files/NIST_ASM_Pb_free_casting.pdf.
  • 31. Biglari M.H., M. Oddy, M.A. Oud, P. Davis. 2000. Pb-Free Solders Based on SnAgCu, SnAgBi, SnCu and SnCu for Wave Soldering of Electronic Assemblies. W Proceedings of Electronics Goes Green 2000+, 73−82.
  • 32. Seelig K., D. Suraski. 2000. The status of lead-free solder alloys. W Proceeding of the 50th Electronic Components and Technology Conference, 1405−1409.
  • 33. Enke N.F., T.J. Kilinski, S.A. Schroeder, J.R. Lesniak. 1989. „Mechanical behaviors of 60/40 tin-lead solder lap joints”. IEEE Transactions on Components, Packaging and Manufacturing Technology 12 (4) : 459−468.
  • 34. McCabe R.J., M.E. Fine. 1998. „Athermal and thermally activated plastic flow in low melting temperature solders at small stresses”. Scripta Materialia 39 (2) : 189−195.
  • 35. Lau J.H., Y.H. Pao. 1997. Solder joint reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies. New York: McGraw-Hill.
  • 36. Technical reports for the lead free solder project: properties reports: room temperature tensile properties of lead-free solder alloys. Lead free solder project CD-ROM. National Center for Manufacturing Sciences (NCMS). 1998.
  • 37. Lau J.H., C. Chang, S.W.R. Lee, T.Y. Chen, D. Cheng, T.J. Tseng, D. Lin. 2000. Thermal-Fatigue life of solder bumped Flip-chip on Micro Via-In-Pad (VIP) Low Cost Substrates, W Proceeding of NEPCON – West Conference, 554−562.
  • 38. Wong T., A.H. Matsunaga. 1995. Ceramic Ball Grid Array Solder Joint Thermal Fatigue Life Enhancement. W Proceeding of NEPCON – West Conference, 554−562.
  • 39. Sigelko J.D., K.N. Subramanian. 2000. „Overview of lead-free solders”. Advanced Materials and Processes 157 (3) : 47−48.
  • 40. Hernández C.L., P.T. Vianco, J.A. Rejent. 1998. Effect of interface microstructure on the mechanical properties of Pb-free hybrid microcircuit solder joints. IPC/SMTA Electronics Assembly.
  • 41. Ho Ch.Y., J.G. Duh. 2013. „Wetting kinetics and wettability enhancement of Pd added electrolytic Ni surface with molten Sn-3.0Ag-0.5Cu solder”. Materials Letters 92 (1 February 2013) : 278−280.
  • 42. Xu D.X., Y.P. Lei, Z.D. Xia, F. Guo, Y.W. Shi. 2008. „Experimental wettability study of lead-free splder on Cu substrates using varying flux and temperature”. Journal of Electronic Materials 37 (1) : 125−133.
  • 43. Yu D.Q., J. Zhao, L. Wang. 2004. „Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements”. Journal of Alloys and Compounds 376 (1−2) : 170−175.
  • 44. Hwang J.S., K.H. Chew, V. Kho. 2001. „The role of wetting ability of lead-free alloys”. The International Journal of Microcircuits and Electronic Packaging 24 (4) : 316−327.
  • 45. Rizvi M.J., Y.C. Chan, C. Bailey, H. Lu, M.N. Islam, B.Y. Wu. 2005. „Wetting and reaction of Sn-2.8Ag-0.5Cu-1.0Bi solder with Cu and Ni substrates”. Journal of Electronic Materials 34 (8) : 1115−1122.
  • 46. Arenas M.F., M. He, V.L. Acoff. 2006. „Effect of flux on the wetting characteristics of SnAg, SnCu, SnAgBi and SnAgCu lead-free solders on copper substrates”. Journal of Electronic Materials 35 (7) : 1530−1536.
  • 47. Yoon J.W., B.I. Noh, B.K. Kim, Ch.Ch. Shur, S.B. Jung. 2010. „Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints”. Journal of Alloys and Compounds 486 (1−2) : 142−147.
  • 48. Noh B., J.H. Choi, J.W. Yoon. 2010. „Effects of cerium content on wettability, microstructure and mechanical properties of Sn–Ag–Ce solder alloys”. Journal of Alloy Compounds 499 (2) : 154−159.
  • 49. Xiao W.M., Y.W. Shi, G.C. Xu. 2009. „Effect of rare earth on mechanical creep–fatigue property of SnAgCu solder joint”. Journal of Alloy Compounds 472 (1−2) : 198−202.
  • 50. Sundelin J.J., S.T. Nurmi, T.K. Lepistö, E.O. Ristolainen. 2006. „Microstructure, creep properties, and failure mechanism of SnAgCu solder joints”. Journal of Electronic Materials 35 (7) : 1600−1606.
  • 51. Wang M., J. Wang, H. Feng, W. Ke. 2012. „Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition”. Corrosion Science 63 : 20−28.
  • 52. Wykresy zmian kursu cen metali. 2016. http://wykresycenmetali.blogspot.com.
  • 53. Wu C.M.L., C.M.T. Law, D.Q. Yu, L. Wang. 2003. „The wettability and microstructure of Sn-Zn-RE alloys”. Journal of Electronic Materials 32 (2) : 63−69.
  • 54. Evans J.W. 2007. A Guide to Lead-free Solders: Physical Metallurgy and Reliability. London: Springer-Verlag.
  • 55. Wang L., A.P. Xian. 2005. „Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method”. Journal of Electronic Materials 34 (11) : 1414−1419.
  • 56. Plevachuk Yu., V. Sklyarchuk, G. Gerbeth, S. Eckert, R. Novakovic. 2011. „Surface tension and density of liquid Bi- Pb, Bi-Sn and Bi-Pb-Sn eutectic alloys”. Surface Science 605 (11−12) : 1034−1042.
  • 57. Date M., K.N. Tu, T. Shoji, M. Fujiyoshi, K. Sato. 2004. „Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads”. Journal of Materials Research 19 (10) : 2887−2896.
  • 58. Lee C.B., S.B. Jung, Y.E. Shin, C.C. Shur. 2002. „Effect of isothermal aging on ball shear strength in BGA joints with Sn-3.5Ag-0.75Cu solder”. Materials Transactions 43 (8) : 1858−1863.
  • 59. Yen Y.W., C.C. Jao, C.P. Lee. 2006. „Effect of Cu addition on interfacial reaction between Sn-9Zn solder and Ag”. Journal of Materials Research 21 (12) : 2986−2990.
  • 60. Abtew M., G. Selvaduray. 2000. „Lead-free Solders in Microelectronics”. Materials Science and Engineering 27 (5−6) : 95−141.
  • 61. Vincent J.H., B.P. Richards, D.R. Wallis, I.A. Gunter, M. Warwick, H.A.H. Steen, P.G. Harris, M.A. Whitmore, S.R. Billington, A.C. Harman, E. Knight. 1993. „Alternative solders for electronics assemblies: Part 2: UK Progress and Preliminary Trials”. Circuit World 19 (3) : 32−34.
  • 62. Tojima K. 1999. Wetting Characteristics of Lead-free Solders. Senior Project Report. Materials Engineering Department, San Jose State University.
  • 63. Jackson A.M., P.T. Vianco, I. Artaki. 1994. Manufacturing feasibility of several lead-free solders for electronic assembly. W Proceedings of the 7th International SAMPE Electronics Conference, 381−391. 20−23 June 1994, Parsippany, NJ, USA.
  • 64. Felton L.E., C.H. Raeder, C.K. Havasy, D.B. Knorr. 1992. Pb-free soldering alternatives for fine pitched electronics packaging. W Proceedings of the 13th IEEE/CHMT International Symposium on Electronics Manufacturing Technology, 300−304.
  • 65. Pan T.-Yu, J. Nicholson, H. Blair, R. Poulson, R. Cooper, D. Mitlin, M.F. Cheung. 1994. Dynamic wetting characteristics of some lead-free solders. W Proceedings of the 7th International SAMPE Electronics Conference, 343−354. 20−23 June 1994, Parsippany, NJ, USA.
  • 66. Vianco P.T., D.R. Frear. 1993. „Issues in the replacement of lead-bearing solders”. JOM 45 (7) : 14−19.
  • 67. Vianco P.T., F.M. Hosking, J.A. Rejent. 1992. Wettability analysis of tin-based, lead-free solders. W Proceedings of the Technical Program – National Electronic Packaging and Production Conference, Vol. 3, 1730−1738. Anaheim, CA, USA: Cahner Exposition Group.
  • 68. Lee N.C., J. Slattery, J. Sovinsky, I. Artaki, P. Vianco. 1995. „A novel lead-free solder replacement”. Circuits Assembly 6 (10) : 36−44.
  • 69. Artaki I., A.M. Jackson, P.T. Vianco. 1994. „Evaluation of lead-free joints in electronic assemblies”. Journal of Electronic Materials 23 (8) : 757−764.
  • 70. Loomans M.E., S. Vaynman, G. Ghosh, M.E. Fine. 1994. „Investigation of multi-component lead-free solders”. Journal of Electronic Materials 23 (8) : 741−746.
  • 71. Artaki I., D.W. Finley, A.M. Jackson, U. Ray, P.T. Vianco. 1995. Wave soldering with lead-free solders. W Proceedings of the Technical Program on Advanced Electronics Manufacturing Technologies, 495−510. SMI Surface Mount International, San Jose, CA, USA, August 1995.
  • 72. Seelig K. 1995. „A study of lead-free solder alloys”. Circuits Assembly 6 (10) : 46−48.
  • 73. Yamagishi Y., M. Ochiai, H. Ueda, T. Nakanishi, M. Kitazima. 1996. Pb-free solder of Sn-58Bi improved with Ag. W Proceedings of the 9th International Microelectronics Conference, 252−255. 24−26 April 1996, Omiya, Japan.
  • 74. ASM International. Electronic Materials Handbook, Vol. 1, Packaging, 640. 1989. Materials Park, OH: ASM International.
  • 75. Solder alloy data: mechanical properties of solders and soldered joints. International Tin Research Institute, Uxbridge, England, p. 60.
  • 76. Tomlinson W.J., I. Collier. 1987. „The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder”. Journal of Materials Science 22 (5) : 1835−1839.
  • 77. Glazer J. 1995. „Metallurgy of low temperature Pb-free solders for electronic assembly”. „International Materials Reviews” 40 (2) : 65−93.
  • 78. Knorr D.B., L.E. Felton. 1994. Designing lead-free solder alloys for advanced electronics assembly. W Proceedings of the 1994 Design for Manufacturability Conference, 27−34. New York: ASME N.Y.
  • 79. Thwaites C.J. 1977. Soft Soldering Handbook. International Tin Research Institute, Publication, No. 533.
  • 80. Huang Ch.W., K.L. Lin. 2004. „Wetting properties of and interfacial reactions in lead-free Sn-Zn based solders on Cu and Cu plated with an electroless Ni-P/Au layer”. Materials Transactions 45 (2) : 588−594.
  • 81. PN-EN 61190-1-3:2003 Materiały do łączenia zespołów elektronicznych. Część 1-1: Wymagania dotyczące topników do lutowania połączeń wysokiej jakości w zespołach elektronicznych.
  • 82. Chen W., S. Xue, H. Wang, J. Wang, Z. Han. 2009. „Solderability and intermetallic compounds of Sn-9Zn-xAg leadfree solders wetted on Cu substrate”. Rare Metals 28 (6) : 656−660.
  • 83. Ren G., I.J. Wilding, M.N. Collins. 2016. „Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections”. Journal of Alloys and Compounds 665 : 251−260.
  • 84. Shen J., Y.Y. Pu, H.G. Yin, D.J. Luo, J. Chen. 2014. „Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys”. Journal of Alloys and Compounds 614 : 63−70.
  • 85. Dong W.X., Y.W. Shi, Z.D. Xia, Y.P. Lei, F. Guo. 2008. „Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy”. Journal of Electronic Materials 37 (7) : 982−991.
  • 86. Li J.F., S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt. 2006. „Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects”. Acta Materialia 54 (11) : 2907−2922.
  • 87. Hu X.W., Y.L. Li, Z.X. Min. 2013. „Interfacial reaction and growth behavior of IMCs layer between Sn-58Bi solders and a Cu substrate”. Journal of Materials Science: Materials in Electronics 24 (6) : 2027−2034.
  • 88. Gao L., J. Wang, T. Lin, P. He, F. Lu. 2013. Improvement of microstructure and mechanical properties of Sn-58Bi alloy with La2O3. W Electronic Packaging Technology (ICEPT), 14th International Conference on, 193−195.
  • 89. Shen J., Y. Pu, H. Yin, Q. Tang. 2015. „Effects of Cu, Zn on the wettability and shear mechanical properties of Sn-Bi-Based lead-free solders”. Journal of Electronic Materials 44 (1) : 532−541.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87c2f7f0-5e9e-48f4-b0b4-4ff324e7ab37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.