PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineral-organic composite for immobilizing Pb in soil subjected to aided phytostabilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The content of Pb in the surface layer of soil is largely connected with the influence of anthropogenic factors. The degradation of soil caused by the presence of increased heavy metal contents has led to the search for or improvement of effective remediation methods. The study made use of the technique of aided phytostabilisation for immobilizing Pb in the soil using a composite based on dolomite and compost (CDC) as a soil amendment, as well as Lolium perenne L. The efficiency was assessed in terms of determining the Pb content in the soil, roots and above-ground parts of the test plant with the use of the atomic absorption spectrometry method. The application of CDC to soil had a positive influence on increasing the production of plant biomass and the pH of the soil, with the Pb being higher in the roots than in the above-ground parts of Lolium perenne L. Upon completing the experiment, the soil amendment was found to have had a positive influence on decreasing the average Pb content in the soil (by 18%) as well as the CaCl2-extractable Pb forms (23%). In the case of the contents of this element in the roots and above-ground parts, on the other hand, the influence was +53% and –36% respectively.
Rocznik
Strony
23--36
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
  • Warsaw University of Life Sciences, Institute of Environmental Engineering
  • Warsaw University of Life Sciences, Institute of Environmental Engineering
Bibliografia
  • 1. Adamczyk-Szabela, D., Wolf, W.M., (2022). The impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules, 27(15), 4671. https://doi.org/10.3390/molecules27154671
  • 2. Ashraf, A., Bhardwaj, S., Ishtiaq, H., Devi, Y.K., Kapoor, D., (2021). Lead uptake, toxicity and mitigation strategies in plants. Plant Archives, 21(1), pp. 712–721. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.099
  • 3. Bakshe, P., Jugade, R., (2023). Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 100293. https://doi.org/10.1016/j.hazadv.2023.100293
  • 4. Begonia, M.T., Begonia, G.B., Ighoavodha, M.,Gilliard, D., (2005). Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. International journal of environmental research and public health, 2(2), pp. 228–233. https://doi.org/10.3390/ijerph2005020005
  • 5. Binh, N.T.L., Hoang, N.T., Truc, N.T.T., Khang, V.D., Le, H.A., (2021). Estimating the possibility of lead contamination in soil surface due to lead deposition in atmosphere. Journal of Nanomaterials, 2021, pp. 1–7. https://doi.org/10.1155/2021/5586951
  • 6. Cahyono, P., Loekito, S., Wiharso, D., Rahmat, A., Nishimura, N., Senge, M., (2020). Patterns of nutrient availability and exchangeable aluminum affected by compost and dolomite in red acid soils in Lampung, Indonesia. International Journal of GEOMATE, 19(76), pp. 173–179. https://doi.org/10.21660/2020.76.87631
  • 7. Castro-Bedriñana, J., Chirinos-Peinado, D., Garcia-Olarte, E., Quispe-Ramos, R., (2021). Lead transfer in the soil-root-plant system in a highly contaminated Andean area. Peer Journal, 9, e10624. https://doi.org/10.7717/peerj.10624
  • 8. Cheng, Z., Paltseva, A., Li, I., Morin, T., Huot, H., Egendorf, S., Shaw, R., (2015). Trace metal contamination in New York City garden soils. Soil Science, 180(4/5), pp. 167– 174. http://doi.org/10.1097/ss.0000000000000126
  • 9. Egendorf, S.P., Groffman, P., Moore, G., Cheng, Z., (2020). The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. International Journal of Phytoremediation, 22(9), pp. 916–930. http://doi.org/10.1080/15226514.2020.1774501
  • 10. Entwistle, J.A., Amaibi, P.M., Dean, J. R., Deary, M.E., Medock, D., Morton, J., Roduszkin, I., Bramwell, L., (2019). An apple a day? Assessing gardeners’ lead exposure in urban agriculture sites to improve the derivation of soil assessment criteria. Environment International, 122, pp. 130–141. https://doi.org/10.1016/j.envint.2018.10.054
  • 11. Feng, W., Zhang, S., Zhong, Q., Wang, G., Pan, X., Xu, X., Zhou, W., Li, T., Luo, L., Zhang, Y., (2020). Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA: Properties, optimization, and risk assessment. Journal of Hazardous Materials, 381, 120997. http://doi.org/10.1016/j.jhazmat.2019.120997
  • 12. Feng, Z., Ji, S., Ping, J., Cui, D., (2021). Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends in Analytical Chemistry, 143, 116402. http://doi.org/10.1016/j.trac.2021.116402
  • 13. Fijałkowski, K., Kacprzak, M., Grobelak, A., Placek, A., (2012). The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona środowiska, 15, pp. 81–92.
  • 14. Giannakoula, A., Therios, I.,Chatzissavvidis, C., (2021). Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants, 10(1), 155. https://doi.org/10.3390/plants10010155
  • 15. Hart, G., Gilly, A., Koether, M., McElroy, T., Greipsson, S., (2022). Phytoextraction of lead (Pb) contaminated soil by switchgrass (Panicum virgatum L): Impact of BAP and NTA applications. Frontiers in Energy Research, 10, 1032404. https://doi.org/10.3389/fenrg.2022.1032404
  • 16. Hasegawa, H., Al Mamun, M.A., Tsukagoshi, Y., Ishii, K., Sawai, H., Begum, Z.A., Rahman, I.M., (2019). Chelator-assisted washing for the extraction of lead, copper, and zinc from contaminated soils: A remediation approach. Applied Geochemistry, 109, 104397. http://doi.org/10.1016/j.apgeochem.2019.104397
  • 17. Hegedus, C., Pașcalău, S.N., Andronie, L., Rotaru, A.S., Cucu, A.A., Dezmirean, D.S., (2023). The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture, 13(3), 735. https://doi.org/10.3390/agriculture13030735
  • 18. Houssou, A. A., Jeyakumar, P., Niazi, N. K., Van Zwieten, L., Li, X., Huang, L., Wei, L., Zheng, X., Huang, Q., Huang, Y., Huang, X., Wang, H., Liu, Z., Huang, Z., (2022). Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar,4(1), 5. http://doi.org/10.1007/s42773-021-00126-x
  • 19. Jiang, M., Wang, K., Li, G., Zhao, Q., Wang, W., Jiang, J., Wang, Y., Yuan, L., (2023). Stabilization of arsenic, antimony, and lead in contaminated soil with montmorillonite modified by ferrihydrite: Efficiency and mechanism. Chemical Engineering Journal, 457, 141182. https://doi.org/10.1016/j.cej.2022.141182
  • 20. Klik B., Holatko J., Jaskulska I., Gusiatin M.Z., Hammerschmiedt T., Brtnicky M., Liniauskienė E., Baltazar T., Jaskulski D., Kintl A., Radziemska M., (2022). Bentonite as a functional material enhancing phytostabilization of post-industrial contaminated soils with heavy metals. Materials, 15, 8331. https://doi.org/10.3390/ma15238331
  • 21. Kulikowska, D., Klimiuk, E., (2011). Organic matter transformations and kinetics during sewage sludge composting in a two-stage system. Bioresource Technology,102(23), pp. 10951–10958. http://doi.org/10.1016/j.biortech.2011.09.009
  • 22. Kushwaha, A., Hans, N., Kumar, S., Rani, R., (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and environmental safety, 147, pp. 1035–1045. http://doi.org/10.1016/j.ecoenv.2017.09.049
  • 23. Lai, Z., Mei, Z., Hui, Z., ShaoNan, Z., XueQiang, Z., Ping, L., (2023). Insights into the enhanced electrokinetic remediation of lead and cadmium contaminated soil with the composite electrolyte of citric acid and calcium chloride. Separation Science and Technology, 58(7), pp. 1319–1330. http://doi.org/10.1080/01496395.2023.2189058
  • 24. Lan, M.M., Liu, C., Liu, S.J., Qiu, R.L., & Tang, Y.T., (2020). Phytostabilization of Cd and Pb in highly polluted farmland soils using ramie and amendments. International Journal of Environmental Research and Public Health, 17(5), 1661. http://doi.org/10.3390/ijerph17051661
  • 25. Liu, Q., Luo, J., Tang, J., Chen, Z., Chen, Z., Lin, Q., (2022b). Remediation of cadmium and lead contaminated soils using Fe-OM based materials. Chemosphere, 307, 135853 http://doi.org/10.1016/j.chemosphere.2022.135853
  • 26. Liu, Q., Zhang, Q., Jiang, S., Du, Z., Zhang, X., Chen, H., Cao, W., Nghiem, L.D., Ngo, H.H., (2022a). Enhancement of lead removal from soil by in-situ release of dissolved organic matters from biochar in electrokinetic remediation. Journal of Cleaner Production, 361, 132294. http://doi.org/10.1016/j.jclepro.2022.132294
  • 27. Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., Kim, K. R., (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – A critical review. Soil science and plant nutrition, 64(2), pp. 156–167. http://doi.org/10.1080/00380768.2018.1440938
  • 28. Malik, K. M., Khan, K. S., Rukh, S., Khan, A., Akbar, S., Billah, M., Bashir, S., Danish, S., Alwahibi, M.S., Elshikh, M.S., Al-Ghamdi, A.A., Mustafa, A.E.-Z. M.A., (2021). Immobilization of Cd, Pb and Zn through organic amendments in wastewater irrigated soils. Sustainability, 13(4), 2392. http://doi.org/10.3390/su13042392
  • 29. Mendez, M.O., Maier, R.M., (2008). Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environmental Health Perspectives, 116(3), pp. 278–283. http://doi.org/10.1289/ehp.10608
  • 30. Mensah, A.K., Frimpong, K.A., (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018. http://doi.org/10.1155/2018/6837404
  • 31. Mocek-Płóciniak, A., Mencel, J., Zakrzewski, W., Roszkowski, S., (2023). Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants, 12(8), 1653. http://doi.org/10.3390/plants12081653
  • 32. Paltseva, A.A., Cheng, Z., McBride, M., Deeb, M., Egendorf, S.P., Groffman, P.M., (2022). Legacy lead in urban garden soils: communicating risk and limiting exposure. Frontiers in Ecology and Evolution, 10, 873542. http://doi.org/10.3389/fevo.2022.873542
  • 33. Peng, T., O’Connor, D., Zhao, B., Jin, Y., Zhang, Y., Tian, L., Zheng, N., Li, X., Hou, D., (2019). Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in Beijing, China. Environmental Pollution, 245, pp. 363–370. http://doi.org/10.1016/j.envpol.2018.11.011
  • 34. Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E., (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, pp. 113–136. http://doi.org/10.1007/978-1-4419-9860-6_4
  • 35. Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., Das, P., (2010). Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of hazardous materials, 177(1–3), pp. 465–474. http://doi.org/10.1016/j.jhazmat.2009.12.056
  • 36. Qiu, S., Cao, W., Chen, Z., Liu, Y., Song, J., Zhang, R., Bai, H., (2021). Experiments and mechanisms for leaching remediation of lead-contaminated soil by enhancing permeability. Chemical Engineering Journal, 426, 130720. http://doi.org/10.1016/j.cej.2021.130720
  • 37. Radziemska, M., (2018). Enhanced phytostabilization of metal-contaminated soil after adding natural mineral adsorbents. Polish Journal of Environmental Studies, 27(1), pp. 267–273. http://doi.org/10.15244/pjoes/75125
  • 38. Radziemska, M., Bęś, A., Gusiatin, Z. M., Jeznach, J., Mazur, Z., Brtnický, M., (2020). Novel combined amendments for sustainable remediation of the Pb-contaminated soil. AIMS Environmental Science, 7(1), pp. 1–12. http://doi.org/10.3934/environsci.2020.1.1
  • 39. Radziemska, M., Gusiatin, Z. M., Bilgin, A., (2017a). Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecological Engineering, 102, pp. 490–500. https://doi.org/10.1016/j.ecoleng.2017.02.028
  • 40. Radziemska, M., Gusiatin, Z. M., Mazur, Z., Radzevičius, A., Bęś, A., Šadzevičius, R., Holatko, J., Dapkienė, M., Adamonytė, I., Brtnicky, M., (2023). Composite Biochar with Municipal Sewage Sludge Compost – A New Approach to Phytostabilization of PTE Industrially Contaminated Soils. Energies, 16(4), 1778. https://doi.org/10.3390/en16041778
  • 41. Radziemska, M., Koda, E., Bilgin, A., Vaverková, M.D., (2018). Concept of aided phytostabilization of contaminated soils in postindustrial areas. International Journal of Environmental Research and Public Health, 15(1), 24. https://doi.org/10.3390/ijerph15010024
  • 42. Radziemska, M., Vaverková, M.D., Baryła, A., (2017b). Phytostabilization – management strategy for stabilizing trace elements in contaminated soils. International Journal of Environmental Research and Public Health, 14(9), 958. https://doi.org/10.3390/ijerph14090958
  • 43. Radziemska, M., Vaverková, M. D., Mazur, Z., (2019). Pilot scale use of compost combined with sorbents to phytostabilize Ni-contaminated soil using Lolium perenne L. Waste and Biomass Valorization, 10, pp. 1585–1595. https://doi.org/10.1007/s12649-017-0166-9
  • 44. Rajendran, S., Priya, T.A.K., Khoo, K.S., Hoang, T.K., Ng, H.S., Munawaroh, H.S.H., Karaman, C., Orooji, Y., Show, P.L., (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chemosphere.2021.132369
  • 45. Shaaban, M., Peng, Q. A., Lin, S., Wu, Y., Khalid, M. S., Wu, L., Mo, Y., Hu, R., (2016). Dolomite application enhances CH4 uptake in an acidic soil. Catena, 140, pp. 9–14. https://doi.org/10.1016/j.catena.2016.01.014
  • 46. Sigua, G.C., Novak, J.M., Watts, D.W., Ippolito, J.A., Ducey, T.F., Johnson, M.G., Spokas, K.A., (2019). Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments, 6(6), 69. https://doi.org/10.3390/environments6060069
  • 47. Sun, X., Sun, M., Chao, Y., Shang, X., Wang, H., Pan, H., Yang, Q., Lou, Y., Zhuge, Y., (2023). Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters, 5(1), pp. 118-127. https://doi.org/10.1007/s42832-022-0134-6
  • 48. Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M., (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011. https://doi.org/10.1155/2011/939161
  • 49. Taylor, M.P., Isley, C.F., Fry, K.L., Liu, X., Gillings, M.M., Rouillon, M., Soltani, N.S., Gore, D.B., Filippelli, G.M., (2021). A citizen science approach to identifying trace metal contamination risks in urban gardens. Environment International, 155, 106582. https://doi.org/10.1016/j.envint.2021.106582
  • 50. Teodoro, M., Hejcman, M., Vítková, M., Wu, S., Komárek, M., (2020). Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Science of the Total Environment, 703, 134710. https://doi.org/10.1016/j.scitotenv.2019.134710
  • 51. Testa, G., Corinzia, S.A., Cosentino, S.L., Ciaramella, B.R., (2023). Phytoremediation of Cadmium-, Lead-, and Nickel-Polluted Soils by Industrial Hemp. Agronomy, 13(4), 995. https://doi.org/10.3390/agronomy13040995
  • 52. Thompson, D., Bush, E., Kirk-Ballard, H., (2021). Lead phytoremediation in contaminated soils using ornamental landscape plants. Journal of Geoscience and Environment Protection, 9(5), pp. 152–164. https://doi.org/10.4236/gep.2021.95011
  • 53. Tóth, G., Hermann, T., Szatmári, G., Pásztor, L., (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, pp. 1054–1062. https://doi.org/10.1016/j.scitotenv.2016.05.115
  • 54. Tyler, G., Olsson, T., (2001). Concentrations of 60 elements in the soil solution as related to the soil acidity. European Journal of Soil Science, 52(1), pp. 151–165. https://doi.org/10.1046/j.1365-2389.2001.t01-1-00360.x
  • 55. Wen, M., Ma, Z., Gingerich, D. B., Zhao, X., Zhao, D., (2022). Heavy metals in agricultural soil in China: A systematic review and meta-analysis. Eco-Environment & Health, 1(4), pp. 219–228. https://doi.org/10.1016/j.eehl.2022.10.004
  • 56. Xia, Z., Zhang, S., Cao, Y., Zhong, Q., Wang, G., Li, T., Xu, X., (2019). Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. Journal of Hazardous Materials, 366, pp. 177–183. https://doi.org/10.1016/j.jhazmat.2018.11.109
  • 57. Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., Chen, Z., (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
  • 58. Yang, F., Wang, B., Shi, Z., Li, L., Li, Y., Mao, Z., Liao, L., Zhang, H., Wu, Y., (2021). Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environmental Pollutants and Bioavailability, 33(1), pp. 55–65. https://doi.org/10.1080/26395940.2021.1916407
  • 59. Zhou, H., Liu, Z., Li, X., Xu, J., (2021). Remediation of lead (II)-contaminated soil using electrokinetics assisted by permeable reactive barrier with different filling materials. Journal of Hazardous Materials, 408, 124885. https://doi.org/10.1016/j.jhazmat.2020.124885
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87c19c21-a16b-4ef8-8149-0cae94daadb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.