Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
Abstrakty
Failure may take different forms: reaching the Mohr–Coulomb limit stress condition is accompanied by yielding, strain localisation may occur in shear, compaction or dilatant bands, arbitrary large strain and loss of strength may be accompanied by a field of chaotic displacements of soil particles. Failure is also related to material instability. It takes place when there is a loss of uniqueness of constitutive relationships. It has been found that instability domains exist strictly inside the Mohr–Coulomb failure surface. Material instability can be detected by local Hill's criterion, that is the second-order work at a point. Results of a coupled hydro-mechanical finite element analysis of an 'earth dam – subgrade' system at changing hydraulic boundary conditions have been presented in the article. Normalised values of the second-order work and factor of safety values by the shear strength reduction procedure for corresponding stages of the analysis were calculated. It has been shown that the value of the safety factor corresponds to the values of the second-order work. The analysis results show that a decrease in the value of the safety factor is accompanied by a decrease in the value of the second-order work until negative values occur at some points.
Wydawca
Czasopismo
Rocznik
Tom
Strony
253--261
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Department of Geotechnics and Roads, Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice
Bibliografia
- [1] Bigoni D., Hueckel T.: Uniqueness and localization - I. associative and non-associative elastoplasticity, International Journal of Solids and Structures, 28 (2), 1991, p. 197–213.
- [2] Darve F.: An incrementally non-linear constitutive law of second order and its application to localization, in: Desai, Gallagher (Eds.), Mechanics of Engineering Materials, 1984, p. 179–196.
- [3] Darve F.: Liquefaction phenomenon of granular materials and constitutive instability, Int. Journal of Engineering Computations, 7, 1996, p. 5–28.
- [4] Darve F., Roguiez X.: Instabilities in granular materials, Computational Plasticity, Publ. CIMNE, Owen, Onate, Hinton (eds.), 1994, p. 720–727.
- [5] Darve F., Roguiez X.: Homogeneous bifurcation in soils, in: Adachi et al. (Eds.), Localization and Bifurcation Theory for Soils and Rocks, Balkema Publ., 1998, p. 43–50.
- [6] Darve F., Chau B.: Constitutive instabilities in incrementally non-linear modelling, Constitutive Laws for Engineering Materials, C.S. Desai (ed.), 1987, p. 301–310.
- [7] Darve F., Laouafa F.: Slope failure analysis by a material instability criterion, ECCOMAS 2000, Barcelona, 11–14 September 2000, p. 1–20.
- [8] Hill R.: General theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6, 1958, p. 236–249.
- [9] Laouafa F., Darve F.: Modelling of slope failure by a material instability mechanism, Comp. Geot., 29, 2002, 301–325.
- [10] Lignon S., Laouafa F., Prunier F., Khoa H.D.V., Darve F.: Hydro-mechanical modelling of landslides with a material instability criterion, Géotechnique, Vol. 59 (6), 2009, p. 513–524.
- [11] Lyapunov A.M.: Problème général de la stabilité des mouvements, Annales de la Faculté des Sciences de Toulouse, 9, 1907, p. 203–274.
- [12] Nova R.: Controllability of the incremental response of soils specimens subjected to arbitrary loading programmes, J. Mech. Behav. Mater. 5 (2), 1994, p. 193–201.
- [13] Nova R.: Controllability of geotechnical testing, Revue française de genie civil, Vol. 8, n° 5–6, 2004, p. 613–634.
- [14] Prunier F., Chomette B., Brun M., Darve F.: Designing geotechnical structures with a proper stability criterion as a safety factor, Comp. Geotech., 71, 2016, p. 98–114.
- [15] Rice J. R.: The localization of plastic deformation, In: Theoretical and Applied Mechanics, Fourteenth IUTAM Congress, Amsterdam, Koiter WT (ed.). 1976, 207–220.
- [16] Schanz, T., Vermeer, P., and Bonier, P.: Formulation and verification of the Hardening Soil model, In: Beyond 2000 in Computational Geotechnics. Balkema, Rotterdam, 1999, 1–16.
- [17] Sternik K.: Analiza stateczności skarpy w oparciu o kryterium Hilla, Mat. XVIII Konf. Nauk. „Korbielów 2006” n.t. „Metody numeryczne w projektowaniu i analizie konstrukcji hydrotechnicznych”, Kraków-Korbielów, 2006, s. 113–126.
- [18] Sternik K.: Wykorzystanie kryterium stateczności Hilla w analizie deformacji nasypu na podłożu górniczym, Inżynieria Morska i Geotechnika, 3, 2015, s. 264–269.
- [19] Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics, Chapman & Hall Publisher, 1995.
- [20] Zimmermann, Th., Truty, A., Urbański, A., Podleś, K.: Z_Soil. PC 2007 3D user manual. Theory, Tutorials and Benchmarks, Data Preparation, Elmepress International & Zace Services Ltd, Switzerland, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87bfaad3-f158-4eec-83e1-48f433db24cb