PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of using nanosilver-containing microelement fertiliser on the physiological properties of Avena sativa L.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the Green Revolution, higher crop production has caused a significant decrease in available soil elements. Microelement deficiencies have become a factor that limits the productivity of agricultural crops around the world. Recent advances in bionanotechnology have opened the way to the development of biocompatible foliar nanofertilisers with higher nutrient utilization efficiency. It was assumed that the applied foliar fertilisation would have a positive effect on the growth and development of plants. The application of fertiliser positively affected the parameters analysed of plant gas exchange (net photosynthesis rate (PN), transpiration rate (E), stomatal conductance (gs), intercellular conductance (Ci)) and chlorophyll content and its fluorescence (relative chlorophyll content (CCI), maximum quantum efficiency of photosystem (Fv/Fm), maximum quantum efficiency of primary photochemistry (Fv/F0), photosynthetic efficiency index (PI), total number of active absorption reaction centers (RC/ABS)). Compared to the control, in most analyses, the most stimulating effect was observed for fertiliser concentrations of 0.25 to 0.30% (except Ci - 0.35%). However, the effectiveness of the applied doses depended on the measurement date. To clearly determine the dose that will have the most stimulating effect on the analysed parameters and at the same time will not be toxic to plants, more research should be conducted, especially under field conditions.
Wydawca
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 56 poz., wykr.
Twórcy
  • University of Rzeszów, Faculty of Technology and Life Sciences, Department of Crop Production, Zelwerowicza St, 4, 35-601 Rzeszów, Poland
  • University of Rzeszów, Faculty of Technology and Life Sciences, Department of Crop Production, Zelwerowicza St, 4, 35-601 Rzeszów, Poland
  • Uni-Farma, Armii Krajowej St, 2/303B, 05-500 Piaseczno, Poland
  • Uni-Farma, Armii Krajowej St, 2/303B, 05-500 Piaseczno, Poland
Bibliografia
  • Abdelghany, A.M. et al. (2022) “The individual and combined effect of nanoparticles and biofertilizers on the growth yield and biochemical attributes of peanuts (Arachis hypogea L.),” Agronomy, 12, 398. Available at: https://doi.org/10.3390/agronomy12020398.
  • Abdelsalam, N.R. et al. (2022) “Evaluation of the genotoxicity of zinc nanoparticles in wheat (Triticum aestivum L.) from a cytogenetic perspective,” Saudi Journal of Biological Sciences, 29, pp. 2306–2313. Available at: https://doi.org/10.1016/j.sjbs.2021.11.059.
  • Acharya, P. et al. (2020) “Nanoparticle-mediated seed priming improves germination growth yield and quality of watermelons (Citrullus lanatus) at multiple locations in Texas,” Scientific Reports, 10, 5037. Available at: https://doi.org/10.1038/s41598-020-61696-7.
  • Ahmed, F. et al. (2021) “Applications of copper and silver nanoparticles in wheat plants to induce tolerance to drought and increase yield,” IET Nanobiotechnology, 15, pp. 68–78. Available at: https://doi.org/10.1049/nbt2.12002.
  • Akhoundnejad, Y., Karakas, O. and Demirci, O. (2022) “Response of lettuce to silver nanoparticles under drought conditions,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 46, pp. 111–120. Available at: https://doi.org/10.1007/s40995-021-01241-x.
  • Alabdallah, N.M. et al. (2021) “Silver nanoparticles improve growth and protect against oxidative damage in eggplant seedlings under drought stress,” Plant Soil Environment, 67, pp. 617–624. Available at: https://doi.org/10.17221/323/2021-PSE.
  • Amna et al. (2021) “Bio-fabricated silver nanoparticles: A sustainable approach for augmentation of plant growth and pathogen control,” in M. Faizan, S. Hayat and F. Yu (eds.) Nanoparticles: A new tool to enhance stress tolerance. Sustainable Agriculture Reviews, 53. Berlin/Heidelberg, Germany: Springer, pp. 345–371. Available at: https://doi.org/10.1007/978-3-030-86876-5_14.
  • Bucher, S.F., Bernhardt-Römermann, M. and Römermann, C. (2018) “Chlorophyll fluorescence and gas exchange measurements in field research: An ecological case study,” Photosynthetica, 56, pp. 1161–1170. Available at: https://doi.org/10.1007/s11099-018-0809-5.
  • Compant, S. et al. (2019) “A review of the plant microbiome: Ecology functions and emerging trends in microbial application,” Journal of Advanced Research, 19, pp. 29–37. Available at: https://doi.org/10.1016/j.jare.2019.03.004.
  • Dahlous, K.A. et al. (2019) “Eco-friendly method for silver nanoparticles immobilized decorated silica: Synthesis & characterization and preliminary antibacterial activity,” Journal of the Taiwan Institute of Chemical Engineers, 95, pp. 324–331. Available at: https://doi.org/10.1016/j.jtice.2018.07.020.
  • Dąbrowski, P. et al. (2019) “Exploration of chlorophyll fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass,” Sensors, 19, 2736. Available at: https://doi.org/10.3390/s19122736.
  • Geilfus, C.M. (2017) “The pH of the apoplast: Dynamic factor with functional impact under stress,” Molecular Plant, 10(11), pp. 1371–1386. Available at: https://doi.org/10.1016/j.molp.2017.09.018.
  • Ghavam, M. (2019) “Effect of silver nanoparticles on tolerance to drought stress in Thymus daenensis Celak and Thymus vulgaris L. in germination and early growth stages,” Environmental Stresses in Crop Sciences, 12, pp. 555–566. Available at: https://doi.org/10.22077/escs.2018.788.1287.
  • Goltsev, V.N. et al. (2016) “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russian Journal of Plant Physiology, 63, pp. 869–893. Available at: https://doi.org/10.1134/S1021443716050058.
  • Gruyer, N. et al. (2014) “Interaction between silver nanoparticles and plant growth,” Acta Horticulturae, 1037, pp. 795–800. Available at: https://doi.org/10.17660/ActaHortic.2014.1037.105.
  • Hatami, M., Naghdi Badi, H. and Ghorbanpour, M. (2019) “Nanoelicitation of secondary pharmaceutical metabolites in plant cells: A review,” Journal of Medicinal Plants, 18, pp. 6–36. Available at: https://doi.org/10.29252/jmp.3.71.6.
  • Hojjat, S.S. and Hojjat, H. (2015) “Effect of nano-silver on seed germination and seedling growth in fenugreek seed,” International Journal of Food Engineering, 1(2), pp. 106–110. Available at: https://doi.org/10.18178/ijfe.1.2.106-110.
  • Husted, S. et al. (2023) “What is missing to advance foliar fertilization using nanotechnology?,” Trends in Plant Science, 28(1), pp. 90– 105. Available at: https://doi.org/10.1016/j.tplants.2022.08.017.
  • Iqbal, S., Waheed, Z. and Naseem, A. (2020) “Nanotechnology and abiotic stresses,” in S. Javad (ed.) Nanoagronomy. Cham: Springer, pp. 37–52. Available at: https://doi.org/10.1007/978-3-030-41275-3_3.
  • Janmohammadi, M. et al. (2016) “Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on barley growth and yield components under supplemental irrigation,” Acta Agriculturae Slovenica, 107(2), pp. 265–276. Available at: https://doi.org/10.14720/aas.2016.107.2.01.
  • Janssen, P.J. et al. (2014) “Photosynthesis at the forefront of a sustainable life,” Frontiers in Chemistry, 2, 36. Available at: https://doi.org/10.3389/fchem.2014.00036.
  • Januszkiewicz, R., Kulczycki, G. and Samoraj, M. (2023) “Foliar fertilization of crop plants in Polish agriculture,” Agriculture, 13, 1715. Available at: https://doi.org/10.3390/agriculture13091715.
  • Jasim, B. et al. (2017) “Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.),” Saudi Pharmaceutical Journal, 25, pp. 443–447. Available at: https://doi.org/10.1016/j.jsps.2016.09.012.
  • Jaskulska, I. and Jaskulski, D. (2020) “Efekty stosowania nanocząstek srebra i miedzi w nawozach dolistnych [Effects of using nanoparticles of silver (AgNPs) and copper (CuNPs) in foliar fertilizers],” Przemysł Chemiczny, 99, pp. 250–253.
  • Kalaji, H.M. et al. (2016) “Chlorophyll fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions,” Acta Physiologiae Plantarum, 38, 102. Available at: https://doi.org/10.1007/s11738-016-2113-y.
  • Kalaji, H.M. et al. (2018) “Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants,” Photosynthesis Research, 136, pp. 329–343. Available at: https://doi.org/10.1007/s11120-017-0467-7.
  • Khafaga, A.F. et al. (2022) “Silver-Silica nanoparticles induced dose-dependent modulation of histopathological, immunohistochemical, ultrastructural, proinflammatory, and immune status of broiler chickens,” BMC Veterinary Research, 18, 365. Available at: https://doi.org/10.1186/s12917-022-03459-2.
  • Khina, A.G., Lisichkin, G.V. and Krutyakov, Y.A. (2024) “Effect of silver nanoparticles on the physiology of higher plants,” Russian Journal of Plant Physiology, 71, 169. Available at: https://doi.org/10.1134/S1021443724607882.
  • Kopittke, P.M. et al. (2020) “The role of soil in defining planetary boundaries and the safe operating space for humanity,” Environment International, 146, 106245. Available at: https://doi.org/10.1016/j.envint.2020.106245.
  • Langhans, C. et al. (2022) “Phosphorus for sustainable development goal of doubling smallholder productivity,” Nature Sustainability, 5, pp. 57–63. Available at: https://doi.org/10.1038/s41893-021-00794-4.
  • Mahendran, D., Geetha, N. and Venkatachalam, P. (2019) “Role of silver nitrate and silver nanoparticles in tissue culture medium and enhanced plant growth and development,” in M. Kumar et al. (eds.) In vitro plant breeding toward novel agronomic traits: Biotic and abiotic stress tolerance. Singapore: Springer, pp. 59–74. Available at: https://doi.org/10.1007/978-981-32-9824-8_4.
  • Martnez-Villaluenga, C. and Peas, E. (2017) “Health benefits of oats: Current evidence and molecular mechanisms,” Current Opinion in Food Science, 14, pp. 6–31. Available at: https://doi.org/10.1016/j.cofs.2017.01.004.
  • McBeath, T.M. et al. (2020) “Assessment of foliar-applied phosphorus fertilizer formulations to improve phosphorus nutrition and grain production in wheat,” Crop and Pasture Science, 71(9), pp. 795–806. Available at: https://doi.org/10.1071/CP20241.
  • Menon, R. et al. (2016) “Oat – From farm to fork,” Advances in Food and Nutrition Research, 77, pp. 1–55. Available at: https://doi.org/10.1016/bs.afnr.2015.12.001.
  • Mogollón, J.M. et al. (2021) “More efficient use of phosphorus can avoid cropland expansion,” Nature Food, 2, pp. 509–518. Available at: https://doi.org/10.1038/s43016-021-00303-y.
  • Molnár, Á. et al. (2020) “ZnO nanoparticles induce cell wall remodeling and modify ROS/ RNS signalling in roots of Brassica seedlings,” Ecotoxicology and Environmental Safety, 206, 111158. Available at: https://doi.org/10.1016/j.ecoenv.2020.111158.
  • Nair, P.M.G. and Chung, I.M. (2014) “Physiological and molecular-level effects of exposure to silver nanoparticles in rice (Oryza sativa L.) seedlings,” Chemosphere, 112, pp. 105–113. Available at: https://doi.org/10.1016/j.chemosphere.2014.03.056.
  • Nair, P.M.G. and Chung, I.M. (2015) “Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.),” Acta Physiologiae Plantarum, 37, 1719. Available at: https://doi.org/10.1007/s11738-014-1719-1.
  • Nejatzadeh-Barandozi, F., Darvishzadeh, F. and Aminkhani, A. (2014) Effect of nano-silver and silver nitrate on seed yield of (Ocimum basilicum L.),” Organic and Medicinal Chemistry Letters, 4, 11. Available at: https://doi.org/10.1186/s13588-014-0011-0.
  • Peirce, C.A. et al. (2019) “The timing of application and inclusion of a surfactant are important for the absorption and translocation of foliar phosphoric acid by wheat leaves,” Frontiers in Plant Science, 10, 1532. Available at: https://doi.org/10.3389/fpls.2019.01532.
  • Razzaq, A. et al. (2016) “A novel nanomaterial to enhance the growth and yield of wheat,” Journal of Nanoscience and Technology, 2, pp. 55–58. Available at: https://www.jacsdirectory.com/journal-of-nanoscience-and-technology/articleview.php?id=14 (Accessed: November 03, 2024).
  • Rodriguez, P. et al. (2019) “Systems biology of plant-microbiome interactions,” Molecular Plant, 12(6), pp. 804–821. Available at: https://doi.org/10.1016/j.molp.2019.05.006.
  • Sabra, M.A. et al. (2022) “Comparative effect of commercially available nanoparticles on soil bacterial community and Botrytis fabae caused brown spot: in vitro and in vivo experiment,” Frontiers in Microbiology, 13, pp. 934031–934044. Available at: https://doi.org/10.3389/fmicb.2022.934031.
  • Sadak, M.S. (2019) “Impact of silver nanoparticles on plant growth some biochemical aspects and yield of the fenugreek plant (Trigonella foenum-graecum),” Bulletin of the National Research Center, 43, 38. Available at: https://doi.org/10.1186/s42269-019-0077-y.
  • Sami, F., Siddiqui, H. and Hayat, S. (2020) “Impact of silver nanoparticles on plant physiology: A critical review,” in S. Hayat et al. (eds.) Nanotechnology for plant growth and development. Sustainable Agriculture Reviews, 41. Cham: Springer. Available at: https://doi.org/10.1007/978-3-030-33996-8_6.
  • Sarwar, M. et al. (2023) “Silver nanoparticles protect tillering in drought-stressed wheat by improving leaf water relations and physiological functioning,” Functional Plant Biology, 50(11), pp. 901–914. Available at: https://doi.org/10.1071/FP23036.
  • Sener, S. and Say, H. (2023) “The role of silver nanoparticles in response of in vitro boysenberry plants to drought stress,” Horticulturae, 9, 1177. Available at: https://doi.org/10.3390/horticulturae9111177.
  • Sengottaiyan, A. et al. (2016) “Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial splenocyte cytotoxic potentials,” Research on Chemical Intermediates, 42, pp. 3095–3103. Available at: https://doi.org/10.1007/s11164-015-2199-7.
  • Sillen, W.M.A. et al. (2020) “Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling possible phytopathogen selection and plant hormesis,” Microbiome, 8, 127. Available at: https://doi.org/10.1186/s40168-020-00904-y.
  • Tung, H.T. et al. (2021) “Silver nanoparticles improved explant disinfection in vitro growth runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa),” Plant Cell, Tissue and Organ Culture (PCTOC), 145, pp. 393–403. Available at: https://doi.org/10.1007/s11240-021-02015-4.
  • Wang, J.W. et al. (2021) “Nanoparticles for protein delivery in planta,” Current Opinion in Plant Biology, 60, 102052. Available at: https://doi.org/10.1016/j.pbi.2021.102052.
  • Wasaya, A. et al. (2020) “Improving growth and yield of mungbean (Vigna radiata L.) through foliar application of silver and zinc nanoparticles,” Pure and Applied Biology, 9, pp. 790–797. Available at: https://doi.org/10.19045/BSPAB.2020.90085.
  • White, J.C. and Gardea-Torresdey, J. (2018) “Achieving food security through the very small,” Nature Nanotechnology, 13(8), pp. 627– 629. Available at: https://doi.org/10.1038/s41565-018-0223-y.
  • Yue, J. et al. (2021) “Impact of defatting treatment and oat varieties on structural functional properties and aromatic profile of oat protein,” Food Hydrocolloids, 112, 106368. Available at: https://doi.org/10.1016/j.foodhyd.2020.106368.
  • Zarei, S. and Ehsanpour, A.A. (2023) “Ethylene inhibition with silver nitrate (AgNO3) and pyrazinamide (PZA) ameliorates in vitro salt tolerance of tomato (Lycopersicon esculentum L.) plantlets,” Plant Cell, Tissue and Organ Culture (PCTOC), 154, pp. 239–247. Available at: https://doi.org/10.1007/s11240-023-02511-9.
  • Zhang, K. et al. (2021) “Oat-based foods: Chemical constituents glycemic index and the effect of processing,” Foods, 10, 1304. Available at: https://doi.org/10.3390/foods10061304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87bc8f91-97f9-435a-b39c-4b885b47df50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.