PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced direct torque control of a Syn-Rm, using adaptive flux observer, including magnetic saturation and iron losses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ulepszona bezpośrednia kontrola momentu obrotowego Syn-RM, wykorzystująca adaptacyjnego obserwatora strumienia, w tym nasycenie magnetyczne i straty żelaza
Języki publikacji
EN
Abstrakty
EN
An enhanced direct torque control (E-DTC) system of a synchronous reluctance motor (Syn-RM) is presented in this paper. The motor system is modelled by taking into account its non-linear behaviours such as iron losses and magnetic saturation. The proposed method consists of incorporating hysteresis DTC with a model reference adaptive system (MRAS) flux observer. This technique is applied in order to achieve good torque and flux ripples reduction, which ensure a smooth operation of the Syn-RM along all the speed range. Furthermore, the proposed method has simple design and implementation in the overall control system, and can avoid the drawbacks of conventional flux estimators. Simulation results show the effectiveness of the proposed method.
PL
W artykule przedstawiono udoskonalony układ bezpośredniego sterowania momentem obrotowym (E-DTC) synchronicznego silnika reluktancyjnego (Syn-RM). Układ ruchu jest modelowany z uwzględnieniem jego nieliniowych zachowań, takich jak straty żelaza i nasycenie magnetyczne. Proponowana metoda polega na włączeniu histerezy DTC do wzorcowego obserwatora strumienia adaptacyjnego systemu odniesienia (MRAS). Technika ta jest stosowana w celu uzyskania dobrego momentu obrotowego i redukcji tętnień strumienia, które zapewniają płynną pracę Syn-RM w całym zakresie prędkości. Ponadto, zaproponowany sposób ma prostą konstrukcję i implementację w całym systemie sterowania i pozwala uniknąć wad konwencjonalnych estymatorów strumienia. Wyniki symulacji pokazują skuteczność proponowanej metody.
Rocznik
Strony
255--261
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • University of Mohamed Khaidar, Biskra, Algeria
autor
  • University of Mohamed Khaidar, Biskra, Algeria
  • University of Beira Interior, Covilhã, Portugal
  • University of Mohamed Khaidar, Biskra, Algeria
Bibliografia
  • [1] Yahia, K., Matos, D., Estima, J. O., and Cardoso, A. J. M.,Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses, in International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, pp. 601–606, June 18-20, 2014. https://doi.org/10.1109/SPEEDAM.2014.6871965
  • [2] Farhan, A., Abdelrahem, M., Hackl, C. M., Kennel, R., Shaltout, A., & Saleh, A., Advanced strategy of speed predictive control for nonlinear synchronous reluctance motors, Machines, 8 (3), 44, 2020. https://doi.org/10.3390/machines8030044
  • [3] Lin, F. J., Chen, S. G., & Hsu, C. W., Intelligent backstepping control of synchronous reluctance motor drive system, in International Automatic Control Conference, pp. 1-6, November 2018. https://doi.org/10.1109/CACS.2018.8606767
  • [4] Lin, F. J., Huang, M. S., Chen, S. G., & Hsu, C. W., Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network, IEEE Transactions on Power Electronics, 34 (12), pp. 12080-12094, 2019. https://doi.org/10.1109/TPEL.2019.2906664
  • [5] Daryabeigi, E., Zarchi, H. A., Markadeh, G. A., Soltani, J., & Blaabjerg, F., Online MTPA control approach for synchronous reluctance motor drives based on emotional controller, IEEE Transactions on Power Electronics, 30 (4), pp. 2157-2166, 2014. https://doi.org/10.1109/TPEL.2014.2323180
  • [6] De Kock, H. W., & Kamper, M. J.,Dynamic control of the permanent magnet-assisted reluctance synchronous machine, IET Electric Power Applications, 1 (2), pp. 153-160, 2007. https://doi.org/10.1049/iet-epa:20060325
  • [7] Yu, Y., Chang, D., Zheng, X., Mi, Z., Li, X., & Sun, C., AdaptiveSynRM with fully uncertain parameters, Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/8405847
  • [8] N. Bianchi, S. Bolognani, F. Tinazzi and M. Zigliotto, The influence of rotor design on active flux-based sensorless synchronous reluctance motor drives, 2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED), Catania, Italy, 2017, pp. 7-12, https://doi.org/ 10.1109/SLED.2017.8078419
  • [9] Park, J. M., Kim, S. I., Hong, J. P., & Lee, J. H., Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology, IEEE Transactions on Magnetics, 42 (10), pp. 3479-3481, 2006. https://doi.org/10.1109/TMAG.2006.879501
  • [10] Hesna Aberkane , Djamel Sakri , Djamel Rahem , Enhanced Finite-State Predictive Torque Control of Induction Motor UsingSpace Vector Modulation , Przegląd Elektrotechniczny ,vol. R. 97, nr 4, pp.41-47,2021 .DOI:10.15199/48.2021.04.07
  • [11] Lascu, C., Jafarzadeh, S., Fadali, M. S., & Blaabjerg, F., Direct torque control with feedback linearization for inductionmotor drives, IEEE Transactions on Power Electronics, 32 (3), pp. 2072-2080, 2016. https://doi.org/10.1109/TPEL.2016.2564943
  • [12] Nikzad, M. R., Asaei, B., & Ahmadi, S. O., Discrete duty-cycle control method for direct torque control of induction motor drives with model predictive solution, IEEE Transactions on Power Electronics, 33 (3), pp. 2317-2329, 2017. https://doi.org/10.1109/TPEL.2017.2690304
  • [13] Mehedi, F., Yahdou, A., Djilali, A. B., & Benbouhenni, H.,Direct torque fuzzy controlled drive for multi-phase IPMSM based on SVM technique, Journal Européen des Systémes Automatisées, 53 (2), pp. 259-266, 2020. https://doi.org/10.18280/jesa.530213
  • [14] Rabi Narayan Mishra & Kanungo Barada Mohanty ,Design and Implementation of a Feedback Linearization Controlled IM Drive via Simplified Neuro-Fuzzy Approach, IETE Journal of Research, 64:2, 209-230,2017 https://doi.org/10.1080/03772063.2017.1351321
  • [15] M. Siami, D. A. Khaburi and J. Rodríguez, Torque Ripple Reduction of Predictive Torque Control for PMSM Drives With Parameter Mismatch, in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7160-7168, Sept. 2017. https://doi.org/10.1109/TPEL.2016.2630274
  • [16] S. F. Toloue, S. H. Kamali and M. Moallem, Torque Ripple Minimization and Control of a Permanent Magnet Synchronous Motor Using Multiobjective Extremum Seeking, in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2151-2160, Oct. 2019. https://doi.org/10.1109/TMECH.2019.2929390
  • [17] Hamiti, T., Lubin, T., Baghli, L., & Rezzoug, A.,Modeling of a synchronous reluctance machine accounting for space harmonics in view of torque ripple minimization, Mathematics and Computers in Simulation, 81 (2), pp. 354-366, 2020. https://doi.org/10.1016/j.matcom.2010.07.024
  • [18] Wu, H., Depernet, D., & Lanfranchi, V., Analysis of torque ripple reduction in a segmented-rotor synchronous reluctance machine by optimal currents, Mathematics and Computers in Simulation, 158, pp. 130-147, 2019. https://doi.org/10.1016/j.matcom.2018.07.001
  • [19] Chen, Q., Yan, Y., Xu, G., Xu, M., & Liu, G.,Principle of torque ripple reduction in synchronous reluctance motors with shifted asymmetrical poles, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019. https://doi.org/10.1109/JESTPE.2019.290970
  • [20] Xu, M., Liu, G., Zhao, W., & Aamir, N., Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator, AIP Advances, 8 (5), 056606, 2018. https://doi.org/10.1063/1.5006114
  • [21] C. Liu, K. Wang, S. Wang, Y. Wang and J. Zhu, Torque ripple reduction of synchronous reluctance machine by using asymmetrical barriers and hybrid magnetic core, in CES Transactions on Electrical Machines and Systems, vol. 5, no. 1, pp. 13-20, March 2021. https://doi.org/10.30941/CESTEMS.2021.00003
  • [22] Yammine, S., Hénaux, C., Fadel, M., & Messine, F., Torque ripple reduction in a SynRM at a constant average torque by means of current harmonics injection, Progress In Electromagnetics Research, 80, pp. 167-180, 2018. http://dx.doi.org/10.2528/PIERC17101801
  • [23] Bolognani, S., Peretti, L., & Zigliotto, M., Online MTPA control strategy for DTC synchronous-reluctance-motor drives”, IEEE Transactions on Power Electronics, 26 (1), pp. 20-28, 2010. https://doi.org/10.1109/TPEL.2010.2050493
  • [24] Zhang, X., Foo, G. H. B., & Rahman, M. F.,”A robust field weakening approach for direct torque and flux controlled reluctance synchronous motors with extended constant power speed region”, IEEE Transactions on Industrial Electronics, 67 (3), pp. 1813-1823, 2019. https://doi.org/10.1109/TIE.2019.2903760
  • [25] H. Wu, D. Depernet, V. Lanfranchi, K. E. K. Benkara and M. A. H. Rasid, "A Novel and Simple Torque Ripple Minimization Method of Synchronous Reluctance Machine Based on Torque Function Method, in IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 92-102, Jan. 2021. https://doi.org/10.1109/TIE.2019.2962490
  • [26] Foo, G. H. B., & Zhang, X.,Robust direct torque control ofsynchronous reluctance motor drives in the field-weakening region, IEEE Transactions on Power Electronics, 32 (2), pp. 1289-1298, 2016. https://doi.org/10.1109/TPEL.2016.2542241
  • [27] Zarchi, H. A., Arab Markadeh, R., & Soltani, J., Direct torque control of synchronous reluctance motor using feedback linearization including saturation and iron losses, EPE journal, 19 (3), pp. 50-62, 2009.https://doi.org/10.1080/09398368.2009.11463725
  • [28] Boldea, I. Lorand J., Blaabjerg, F, A modified direct torque control (DTC) of reluctance synchronous motor sensorless drive, Electric Machines & Power Systems, 28 (2), pp. 115-128, 2000. https://doi.org/10.1080/073135600268405
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87bb8652-900f-4fd2-8214-6459d581ce01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.