PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the finite element method to the determining of boiling heat transfer coefficient for minichannel flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Miniature heat exchangers are used to provide higher cooling capacity for new technologies. This means a reduction in their size and cost but the identical power. The paper presents the method for determination of boiling heat transfer coefficient for a rectangular minichannel of 0.1 mm depth, 40 mm width and 360 mm length with asymmetric heating. Experimental research has focused on the transition from single phase forced convection to nucleate boiling, i.e., the zone of boiling incipience. The ‘boiling front’ location has been determined from the temperature distribution of the heated wall obtained from liquid crystal thermography. The experiment has been carried out with R-123, mass flux 220 kg/(m2s), pressure at the channel inlet 340 kPa. Local values of heat transfer coefficient were calculated on the basis of empirical data from the experiment following the solution of the two-dimensional inverse heat transfer problem. This problem has been solved with the use of the finite element method in combination with Trefftz functions. Temperature approximates (linear combinations of Trefftz functions) strictly fulfill the governing equations. In presented method the inverse problem is solved in the same way as the direct problem. The results confirmed that considerable heat transfer enhancement takes place at boiling incipience in the minichannel flow boiling. Moreover, under subcooling boiling, local heat coefficients exhibit relatively low values.
Rocznik
Strony
55--69
Opis fizyczny
Bibliogr. 19 poz., il.
Twórcy
autor
  • Kielce University of Technology; Faculty of Mechatronics and Machine Building, Chair of Mechanics, al. 1000-lecia P.P.7, 25-314 Kielce, Poland
  • Kielce University of Technology, Faculty of Management and Computer Modelling, Chair of Mathematics, al. 1000-lecia P.P.7, Kielce, 25-314 Poland
Bibliografia
  • 1. Piasecka M., Maciejewska B.: The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions. Exp. Therm. Fluid Sci. 38(2012), 19–32.
  • 2. Hozejowska S., Piasecka M., Poniewski M.E.: Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations. Int. J. Therm. Sci. 48(2009), 1049–1059.
  • 3. Piasecka M.: An investigation into the influence of different parameters on the onset of boiling in minichannels. Arch. Thermodyn. 33(2012), 67-90.
  • 4. Alifanow O.M.: Inverse heat transfer problems. Springer-Verlag, Berlin 1994.
  • 5. Kurpisz K., Nowak A.J.: Inverse thermal problems. Int. Series on Comput. Mech. Pub., Southampton, and Boston, 1995.
  • 6. Ozisik M.N., Orlande H.R.B.: Inverse heat transfer: fundamentals and applications. Taylor & Francis, New York 2000.
  • 7. Trefftz E.: Ein Gegenstück zum Ritzschen Verfahren. 2 Int. Kongress für Technische Mechanik, Zürich (1926), 131–137.
  • 8. Kita E.: Trefftz method: an overview. Adv. Eng. Softw. 24(1995), 3–12.
  • 9. Zielinski A.P.: On trial functions applied in the generalized Trefftz method. Adv. Eng. Softw. 24(1995), 147–155.
  • 10. Herrera I.: Trefftz method: A general theory. Numer. Meth Part. D. E. 16(2000), 561–580.
  • 11. Ciałkowski M., Frąckowiak A.: Heat functions and their application to solving of heat conduction and mechanics problems. WPP, Poznań 2000 (in Polish).
  • 12. Cialkowski M.J., Frąckowiak A.: Solution of a stationary 2D inverse heat conduction problem by Trefftz method. J. Therm. Sci. 11(2002), 148–162.
  • 13. Cialkowski M.J.: New Type of basic functions of FEM in application to solution of inverse heat conduction problem. J. Therm. Sci. 11(2002), 163–171.
  • 14. Kompis V., Toma M., Zmindak M., Handrik M.: Use of Trefftz functions in non-linear BEM/FEM. Comput. Struct. 82(2004), 2351–2360.
  • 15. Maciejewska B.: Application of the modified method of finite elements for identification of temperature of a body heated with a moving heat source. J. Theor. App. Mech. 42(2004), 771–787.
  • 16. Cialkowski M.J., Frackowiak A., Grysa K.: Solution of a stationary inverse heat conduction problem by means of Trefftz non-continuous method. Int. J. Heat Mass Tran. 50(2007), 2170–2181.
  • 17. Wang H., Qin Q.: Hybrid FEM with fundamental solutions as trial functions forheat conduction simulation. Acta Mech. Solida Sin. 22(2009), 487–498.
  • 18. Grysa K., Leśniewska R.: Different finite element approaches for inverse heat conduction problems. Inverse Probl. Sci. Eng. 18(2010), 3–17.
  • 19. Grysa K., Maciąg A.: Solving direct and inverse thermoelasticity problems by means of Trefftz base functions for finite element method. J. Therm. Stresses 34(2011), 378–393.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87b44bc1-a87c-42b0-aeb1-720b485afbe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.