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Abstract Miniature heat exchangers are used to provide higher cooling
capacity for new technologies. This means a reduction in their size and cost
but the identical power. The paper presents the method for determination
of boiling heat transfer coefficient for a rectangular minichannel of 0.1 mm
depth, 40 mm width and 360 mm length with asymmetric heating. Experi-
mental research has focused on the transition from single phase forced con-
vection to nucleate boiling, i.e., the zone of boiling incipience. The ‘boiling
front’ location has been determined from the temperature distribution of the
heated wall obtained from liquid crystal thermography. The experiment has
been carried out with R-123, mass flux 220 kg/(m2s), pressure at the chan-
nel inlet 340 kPa. Local values of heat transfer coefficient were calculated
on the basis of empirical data from the experiment following the solution of
the two-dimensional inverse heat transfer problem. This problem has been
solved with the use of the finite element method in combination with Tr-
efftz functions. Temperature approximates (linear combinations of Trefftz
functions) strictly fulfill the governing equations. In presented method the
inverse problem is solved in the same way as the direct problem. The results
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confirmed that considerable heat transfer enhancement takes place at boil-
ing incipience in the minichannel flow boiling. Moreover, under subcooling
boiling, local heat coefficients exhibit relatively low values.

Keywords: Heat transfer; Incipience of flow boiling; Finite element method

Nomenclature

A – linear combination coefficient
[A], [T ], [V ], [v] – matrices
BI – boiling incipience
H – error functional
I – current supplied to the heating foil, A
J – number of elements
L – minichannel length, m
nn – number of nodes in an element
M, N – number of Trefftz functions used for approximation
P – number of measurement points
qV – volumetric heat flux (capacity of internal heat source), W/m3

S – cross-section, m2

T – temperature, K
T̃ (x, y) – temperature approximate, K
u(x, y) – particular solution of the nonhomogeneous equation
V – element of matrix, V
v(x, y) – Trefftz functions
x, y – spatial coordinates

Greek symbols

α – heat transfer coefficient, W/(m2K)
δ – thickness, m
∆U – voltage drop across the foil, V
ϕ(x, y) – base functions
λ – thermal conductivity, W/(mK)
Ω – plane domain

Subscripts

F – foil
G – glass
i, j, k, m, n – numbers
in – inlet
l – liquid
out – outlet
p – measurement point
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1 Introduction

Miniature heat exchangers are used to provide higher cooling capacity for
new technologies. This means a reduction in their size and cost but the
identical power. Owing to the change of state, which accompanies flow
boiling in minichannels, it is possible to meet contradictory demands simul-
taneously, i.e., to obtain a heat flux as large as possible at small temperature
difference between the heating surface and the saturated liquid and, at the
same time, retain small dimensions of heat transfer systems. Review of
relevant literature and the selected publications covering heat transfer in
minichannels is presented in [1–3].

Identification of heat transfer coefficient, presented in this article, be-
longs to the group of inverse heat conduction problems [4–6]. The inverse
problem and the auxiliary direct problem were solved by means of the finite
element method (FEM) in combination with the Trefftz method (FEMT).
The idea of the Trefftz method was presented in [7] and consists in repre-
senting the approximate solution to the problem as a linear combination of
functions which satisfy the governing equation strictly, while the set bound-
ary conditions are satisfied approximately. Additional information on this
method can be found in [8–12]. Combinations of Trefftz method and FEM
was showed in [13–19].

2 Main goal

The objectives of the experimental investigations and calculations discussed
in the present article focus on the evaluation of the heat transfer model and
numerical approach to solving the inverse boundary problem, and the calcu-
lation of local heat transfer coefficient using the FEM with Trefftz functions.
The application of liquid crystal thermography enables the determination
of a two-dimensional temperature distribution on the heating surface.

3 Experimental set-up

The essential part is the test section with a vertical minichannel (Fig. 1a,
4) of 1.0 mm depth, 40 mm width and 360 mm length [3]. The heating
element for the working fluid (R-123) flowing along the minichannel is an
alloy foil (3) stretched between the front cover (6) and the channel body
(7). It is possible to observe changes in the foil surface temperature through
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the opening covered with glass (1). One side of the heating foil (between
the foil and the glass) is covered with a base coat and liquid crystal paint
(2). The test section body (7) contains channels which are either fed with
water (5), or which are the air gaps. On the surface of the quasiadiabatic
wall (7) constant temperature is maintained (the arithmetic mean of the
temperatures at the inlet and outlet of the minichannel). In the inlet and
the outlet of the minichannel pressure converters and thermocouples are
installed.

Figure 1. Diagrams of a) the test section: 1 – glass, 2 – liquid crystals, 3 – heating
foil, 4 – minichannel, 5 – water channel, 6 – front cover, 7 – channel body
(quasiadiabatic wall), 8 – rear cover, b) the main loop of the flow system and
the data and color image acquisition system: 9-test section, 10 – pressure
converter and thermocouple, 11 – lighting system, 12 – CCD video camera, 13
– RGB signal decomposer, 14 – Betacam recorder, 15 – monitor, 16 – computer
with frame grabber and monitor, 17 – data acquisition station, 18 – computer
with monitor, 19,22,24 – heat exchanger, 20 – compensating tank, 21 – rotary
pump, 23 – rotameters, 25 – inverter.

In addition to the test section, the main loop consists is configuration of the
following elements (Fig. 1b): 21 – rotary pump, 19, 22, 24 – heat exchangers
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and 20 – compensating tank. The most important set-up elements for the
flow, pressure and temperature control and measurement are the inverter
(25), rotameters (23), pressure converters and thermocouples (10). The
use of thermography has been made possible thanks to the color image
acquisition system, Fig. 1b, which includes CCD video camera (12) with
RGB signal decomposer (13), Betacam recorder (14) with monitor (15),
and computer with frame grabber (16), monitor and specialist software.
The registration of the remaining measurement data is carried out with
(Keithley 500 A) data acquisition station (17), equipped with (ViewDac)
software installed on another computer (18).

When the refrigerant flows along the minichannel, the increase in the
electric power supplied to the heating foil causes boiling incipience in the
minichannel. This is observed as a ‘boiling front’, which moves upstream
together with the increase in applied heat flux [1–3]. The ‘boiling front’ is
identified as a sudden drop in the temperature of the heating surface follow-
ing its rise, at constant capacity of the internal heat source. Observation
of the two-dimensional temperature distribution on the heating surface of
the minichannel is possible owing to the liquid crystal thermography. A
calibration procedure has to precede the virtual boiling heat transfer inves-
tigation. Its aim is to assign corresponding temperature values to the hues
observed on the surface covered with liquid crystals.

4 Two-dimensional model

4.1 Problem formulation

In the two-dimensional approximation of heat transfer through major el-
ements of the test section (Fig. 2), there occurs a direct problem in the
glass barrier and an inverse problem in the heating foil [1,2]. To solve
them, temperature measurements in the foil on the glass-side boundary, ob-
tained thanks to the application of liquid crystal thermography, are used.
When solving the inverse problem (no boundary condition on the bound-
ary y = δG + δF ), the temperature field and heat flux density in the foil
on the boundary y = δG + δF are determined. Local values of the heat
transfer coefficient are calculated with the assumption of linear tempera-
ture distribution of the fluid flowing along the minichannel (measurement
at minichannel inlet/outlet). It is assumed that in the foil operates a heat
source of constant efficiency, distributed evenly in the entire volume of the
foil. This volumetric heat flux supplied to the heating wall is determined
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from the formula
qV =

I∆U

SF δF
. (1)

The temperature of the glass barrier, TG(x, y), satisfies the Laplace’s equa-
tion

∇2TG = 0 , (2)

where (x, y) ∈ ΩG =
{
(x, y) ∈ R2 : 0 ≤ x ≤ L, 0 ≤ y ≤ δG

}
, and R2 is

the real plane.

Figure 2. Boundary conditions for the two-dimensional approximation of heat transfer
across main elements of the test section.

The temperature of the heating foil TF (x, y) satisfies the equation

∇2TF = − qV

λF
, (3)
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where (x, y) ∈ ΩF =
{
(x, y) ∈ R2 : x1 ≤ x ≤ xP , δG ≤ y ≤ δG + δF

}
, x1

is the coordinate of the first temperature measurement point, and xP is the
coordinate of the final temperature measurement point.

For y = δG (the foil-glass boundary), the following conditions have been
assumed:

TF (xp, δG) = TG (xp, δG) = Tp for p = 1, 2, . . . P , (4)

TF (x, δG) = TG (x, δG) for 0 ≤ x ≤ L , (5)

−λF
∂TF (x, δG)

∂y
= −λG

∂TG(x, δG)
∂y

for 0 ≤ x ≤ L . (6)

Conditions on other boundaries:

∂TG

∂y
= 0 for y = 0 and 0 ≤ x ≤ L , (7)

∂TG

∂x
= 0 for x = 0 as well as x = L and 0 ≤ y ≤ δG , (8)

TF (x1, y) = T1 for δG ≤ y ≤ δG + δF , (9)

TF (xP , y) = TP for δG ≤ y ≤ δG + δF . (10)

The problem thus formulated was solved by means of the Trefftz functions
(T -functions) [7–12]. These functions are used to solve both direct and
inverse problems. The basic property of Trefftz functions is satisfying the
governing equation. In the problem being discussed here, it is the Laplace’s
equation (2). What remains to be done is to adjust the linear combination
of Trefftz functions to required initial and boundary conditions, and – in
the case of inverse problems — also to the measurements, e.g., temperature.

In order to determine the value of heat transfer coefficient on the bound-
ary, y = δG + δF , the temperature of the glass barrier, TG(x, y), is first
determined from the solution of the direct problem, and subsequently the
foil temperature, TF (x, y), is determined from the solution of the inverse
problem. Knowing the foil temperature distribution enables the determi-
nation of local values of heat transfer coefficient on the heating foil–liquid
boundary in the minichannel from the condition

−λF
∂TF (x, δG + δF )

∂y
= α (x)

[
TF (x, δG + δF ) − Tl (x)

]
, (11)

where α is the sought heat transfer coefficient, and Tl(x) is liquid temper-
ature, approximated linearly along the entire minichannel length.
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4.2 Finite element method with the use of T -functions

The solution method for Eqs. (2) and (3) is a generalisation of the method
presented in [13]. In order to solve the formulated problem, domains ΩG

and ΩF are divided into elements Ωj
G and Ωj

F . The approximate solution
of Eq. (2) in each of the elements Ωj

G is a linear combination of Trefftz
functions

T̃ j
G (x, y) =

N∑
n=1

Ajnvn (x, y) . (12)

With the assumption that the temperatures T̃ jk
G at the nodes (xk, yk) of

the element Ωj
G are known, coefficients Ajn are calculated from the linear

systems of equations

T̃ j
G (xk, yk) = T̃ jk

G =
N∑

n=1

Ajnvn (xk, yk), k = 1, 2, . . . N . (13)

In the abbreviated version, Eqs. (13) take the form [v][A] = [T ], whence
upon inverting the matrix [v], [A] = [v]−1[T ] = [V ] [T ] is obtained. There-
fore,

Ajn =
N∑

k=1

VnkT̃
jk
G . (14)

Substituting (14) into (12), the base functions for the element Ωj
G are ob-

tained in the following form:

ϕjk (x, y) =
N∑

n=1

Vnkvn (x, y) . (15)

These functions strictly satisfy Eq. (2) and have the following property:

ϕjk (xjm, yjm) =
{

1 if k = m
0 if k �= m

, (16)

where (xjm, yjm) are the nodes of the element Ωj
G. The temperature in each

element Ωj
G is a linear combination of base functions ϕjk(x, y)

T̃ j
G (x, y) =

nn∑
k=1

ϕjk (x, y) T̃ n
G , (17)
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where j is the number of the element in the domain ΩG, k is the number
of the node in the j-th element, n is the number of the node in the domain
ΩG, nn is the number of nodes in the j-th element.

The unknown coefficients T̃ n
G of the linear combination (17) are deter-

mined by minimization of the functional HG:

HG =
L2∑
i=1

∫ δG

0

[∂ T̃
1+(i−1)L1
G

∂x (0, y)
]2

dy +
L2∑
i=1

∫ δG

0

[∂ T̃ iL1
G

∂x (L, y)
]2

dy+

+
P∑

pj=1

[
T̃ j

G(xpj , δG) − Tpj

]2 +
L1∑
j=1

∫ xj

xj−1

[∂ T̃ j
G

∂y (x, 0)
]2

dx+

+
L2−1∑
i=0

L1−1∑
j=1

∫ yi+1

yi

[
T̃ j+iL1

G (xj , y) − T̃ j+1+iL1
G (xj , y)

]2
dy+

+
L2−1∑
i=0

L1−1∑
j=1

∫ yi+1

yi

[∂ T̃ j+iL1
G
∂x (xj , y) − ∂ T̃ j+1+iL1

G
∂x (xj , y)

]2
dy+

+
L2−1∑
i=1

L1−1∑
j=0

∫ xj+1

xj

[
T̃

(i−1)L1+j+1
G (x, yi) − T̃ iL1+j+1

G (x, yi)
]2

dx+

+
L2−1∑
i=1

L1−1∑
j=0

∫ xj+1

xj

[∂ T̃
(i−1)L1+j+1
G

∂y (x, yi) − ∂ T̃ iL1+j+1
G

∂y (x, yi)
]2

dx ,

(18)

where L1 is the number of elements in the Ox axis direction, L2 is the
number of elements in the Oy axis direction.

In a similar way, foil temperature is determined. In each element Ωj
F , it

is presented in the form of a linear combination of base functions ϕjk(x, y)
defined by the Eq. (15)

T̃ j
F (x, y) = u(x, y) +

nn∑
k=1

ϕjk (x, y)
[
T̃ n

F − u(xn, yn)
]

, (19)

where j is the number of the element in the domain ΩF , n is the number of
the node in the domain ΩF , u(xn, yn) is the value of the particular solution
in the n-th node of the domain ΩF , whereas k and nn carry the same
meaning as in the Eq. (17). The unknown coefficients T̃ n

F of the linear
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combination (19) are determined by minimization of the functional HF :

HF =
L4∑
i=1

∫ δF

δG+δF

[∂ T̃
1+(i−1)L3
F

∂x (x1, y) − T1

]2
dy+

+
L4∑
i=1

∫ δF

δG+δF

[∂ T̃ iL3
F

∂x (xP , y) − TP

]2
dy+

+
P∑

pj=1

[
T̃ j

F (xpj , δG) − Tpj

]2 +
L3∑
j=1

∫ xj+1

xj

[
T̃ j

F (x, δG) − T̃ j
G(x, δG)

]2
dx+

+
L3∑
j=1

∫ xj+1

xj

[
λF

∂ T̃ j
F

∂y (x, δG) − λG
∂ T̃ j

G
∂y (x, δG)

]2
dx+

+
L4−1∑
i=0

L3−1∑
j=1

∫ yi+1

yi

[
T̃ j+iL3

F (xj , y) − T̃ j+1+iL3
F (xj , y)

]2
dy+

+
L4−1∑
i=0

L3−1∑
j=1

∫ yi+1

yi

[∂ T̃ j+iL3
F
∂x (xj , y) − ∂ T̃ j+1+iL3

F
∂x (xj , y)

]2
dy+

+
L4−1∑
i=1

L3−1∑
j=0

∫ xj+1

xj

[
T̃

(i−1)L3+j+1
F (x, yi) − T̃ iL3+j+1

F (x, yi)
]2

dx+

+
L4−1∑
i=1

L3−1∑
j=0

∫ xj+1

xj

[∂ T̃
(i−1)L3+j+1
F

∂y (x, yi) − ∂ T̃ iL3+j+1
F

∂y (x, yi)
]2

dx ,

(20)
where L3 is the number of elements in the Ox axis direction, L4 is the
number of elements in the Oy axis direction.

5 Error analyses

5.1 The accuracy of heating foil temperature measurements
by liquid crystal thermography and heat source
efficiency measurement error

Evaluation of the accuracy of heating foil temperature measurements with
liquid crystals thermography and heat source efficiency measurement error
were discussed in [2]. Mean temperature measurement error of heating foil
by liquid crystal thermography ∆TF = 0.86 K was obtained. The value of
the relative heat source efficiency measurement amounted to 2.04%.
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5.1.1 Measurement error of heat transfer coefficient

The mean relative error of heat transfer coefficients, similarly as in the
work [1], was determined from the following formula:

σα =
∆α

P∑
k=1

α(xk)
, (21)

where

∆α =

[(
P∑

k=1

∂α(xk)
∂λF

∆λF

)2

+
(

P∑
k=1

∂α(xk)
∂TF

∆TF

)2

+

+
(

P∑
k=1

∂α(xk)
∂Tl

∆Tl

)2

+
(

P∑
k=1

∂α(xk)

∂
∂TF
∂y

∆∂TF
∂y

)2
]2

.

(22)

The heat transfer coefficient α = α(λF , TF , Tl,
∂TF
∂y ) is determined by for-

mula (11), where ∆λF is the accuracy of the heat conductivity determina-
tion, ∆λF = 0.01 W/(mK); ∆TF is the accuracy of the foil temperature
approximation (since the foil is very thin, we can assume that ∆TF is equal
to the error of the temperature measurement on the boundary y = δG),
∆TF (xk, δG) = 0.86 K; ∆Tl is the liquid temperature measurement er-

ror, ∆Tl = 0.77 K; ∆∂TF
∂y =

∣∣∣∣ 1
P

P∑
k=1

∂2TF (xk)
∂y∂x ∆x

∣∣∣∣, here ∆x denotes distance

between the measuring points: ∆x = 7.388 × 10−4 m. Table 1 presents
examples of mean relative errors of the heat transfer coefficient. The mean
relative error is in the range 3.06 to 3.41% and it tends to increase with the
heating flux supplied to the heating area.

6 Experimental results

Boiling incipience is recognised as a sudden drop in the heating surface
temperature that follows its systematic increase at constant capacity of the
internal heat source. It is called ‘boiling front’ (BI) and it shifts in the direc-
tion opposite to the fluid flow in the minichannel with the increase in heat
flux supplied to the heating surface [1–3]. Figure 3 shows examples of hue
distribution on the foil surface, obtained with liquid crystal thermography,
with a visible ‘boiling front’.
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Table 1. Mean relative errors of the heat transfer coefficient σα [%].

Set No. Mean relative error
(see Fig. 4) σα [%]

1 3.41
2 3.38
3 3.30
4 3.28
5 3.15
6 3.18
7 3.12
8 3.06

Figure 3. Images of temperature distribution on the heating wall, experimental data:
flow velocity 0.35 m/s, mass flux 220 kg/(m2s), pressure at the channel inlet
340 kPa, qV = 2.5 × 105 − 3.7 × 105 kW/m3.

Applied finite element method in combination with Trefftz method
(FEMT) has used four T -functions: 1, x, y, xy. In the domains ΩG and
ΩF , a rectangular mesh, parallel to the coordinate system axis, has been
introduced. The domain ΩG has been divided into 2 849 elements, and ΩF

into 651–1169 elements. In the domain ΩG 3264 nodes have been placed,
and in the domain ΩF from 1304 to 2340 nodes. In each element Ωj

G,Ωj
F
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a set of four nodes placed in the vertices of the rectangular element has
been selected. The function u (x, y) = −0.5qV λ−1

F y2 has been assumed to
be the particular solution of Eq. (3). Values of local heat transfer coeffi-
cients as a function of the distance from the inlet to the minichannel have
been presented in Fig. 4. The dependence confirmed that considerable heat
transfer enhancement takes place at boiling incipience un the minichannel
flow boiling.

Figure 4. Heat transfer coefficient dependence on the distance along the minichannel
length, data as in Fig. 3.

7 Conclusions

The paper presents the procedure of determining of the heat transfer coef-
ficient by solving the inverse problem in the heating foil and the ancillary
direct problem in the glass barrier. The problem under study has been
solved by means of the finite element method in combination with the Tre-
fftz method. Lagrange interpolation with the Trefftz function has been used
for the construction of base functions in the finite element method. This
is an analytical and numerical approach and the inverse problem has been
solved in the same way as the direct one. This method allows solving prob-
lems which lack the boundary condition or when the number of boundary
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conditions is excessive. In issues lacking the boundary condition, informa-
tion collected from the measurements at points close to the boundary is
required. In the considered problem the temperature of the heating foil is
derived from measurements at y = δG since no condition at y = δG + δF

is available. The determined approximates of the glass barrier and heating
foil temperatures strictly satisfy the respective differential equations (2) and
(3). In the FEMT, the condition (4) is strictly satisfied (element nodes are
placed at measurement points), while the remaining boundary conditions
are approximately satisfied.

In the minichannel flow boiling, considerable heat transfer enhancement
takes place at boiling incipience. It is observed as a sharp increase in the
heat transfer coefficient.
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