PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increasing metrological autonomy of in-plant measuring systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors offer to solve the problem of providing traceability of measurements by increasing metrological autonomy of in-plant measuring systems. The paper shows the expedience of increasing metrological autonomy by creating a “virtual” reference. There are analysed possible variants of implementation of the “virtual” reference, which will provide high metrological stability of measurements at insignificant additional expenses. The authors point out the necessity of creation of universal technical and programmatic means of mutual comparison for the in-plant measuring systems to increase the reliability of measurements in the conditions of metrological autonomy.
Twórcy
autor
  • Department of Metrology, Standardization and Certification, Lviv Polytechnic National University, Karpinskyy Str. 1, 79013, Lviv, Ukraine
autor
  • Department of Computer Science and Automatics, University of Bielsko-Biala, Willowa Str. 2, 43-300 BielskoBiała, Poland
  • Department of Specialized Computer Systems, Lviv Politechnic National University, Karpinskyy Str. 1, 79013, Lviv, Ukraine
autor
  • Department of Information-Measuring Engineering, Lviv Polytechnic National University, Karpinskyy Str. 1, 79013, Lviv, Ukraine
autor
  • School of Computer Science, Hubei University of Technology, Hubei, China
autor
  • Department of Information-Measuring Engineering, Lviv Polytechnic National University, Karpinskyy Str. 1, 79013, Lviv, Ukraine
  • Department of Metrology, Standardization and Certification, Lviv Polytechnic National University, Karpinskyy Str. 1, 79013, Lviv, Ukraine
Bibliografia
  • 1. Andrusyak S.A., Vladimirov V.L., Dufanets G.S., Lysyi B.M., Pinchevskii A.D., and Yasenitskii E.I. Autonomous metrological security of automatic checking systems for ac voltage and current measuring facilities in the frequency range from 20 Hz to 100 kHz. Measurement Techniques, 31(12), 1988, 1212–1215.
  • 2. Andria G., Cavone G., Fabbiano L., Giaquinto N. and Savino M. Automatic calibration systemfor digital instruments without built-in communication interface. Proc. XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal 2009, 857–860.
  • 3. Ayres D. and Blundell A. Calibrating thermometers, (www.isotech.co.uk).
  • 4. Bezuglov D.A. and Pomortsev P.M. Estimating the unit of the physical quantity of a collective working standard from the results of intragroup comparisons by utilizing the maximum-likelihood criterion. Measurement Techniques, 44(1), 2001, 1–8.
  • 5. Bezuglov D.A. and Pomortsev P.M. Methodology for increasing intercalibration interval of a group measure. Measurement Techniques, 41(11), 1998, 985–989.
  • 6. Birch J. Benefit of legal metrology for the economy and society. A study for the International Committee of Legal Metrology, 2003.
  • 7. Birch J. Role and impact of legal metrology for consumer protection. ISO/COPOLCO Workshop, 2012.
  • 8. Fridman A.E. The quality of measurements. Springer-Verlag, New York, 2012.
  • 9. Glowacz A., Glowacz A. and Glowacz Z. Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(1), 2014, 92–96.
  • 10. Ibarra-Castanedo C., Gonzalez D., Klein M., Pilla M., Vallerand S. and Maldague X. Infrared image processing and data analysis. Infrared Physics and Technology 46, 2004, 75–83.
  • 11. ISO 10012:2003 Measurement management systems – Requirements for measurement processes and measuring equipment.
  • 12. Klein M. and Rosenberg L. Deterioration of inventory and equipment. Naval Research Logistics Quarterly, 7(1), 1960, 49–62.
  • 13. Kochan R., Kochan O., Chyrka M., Jun Su and Bykovyy P. Approaches of voltage divider development for metrology verification of ADC. Proc. of the 2013 IEEE 7-th International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Berlin, Germany, 2013, 70–76.
  • 14. Maruda R.W., Krolczyk G.M., Feldshtein E., Pusavec F., Szydlowski M., Legutko S. and Sobczak-Kupiec A. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture, 100, 2016, 81–92.
  • 15. Morris A.S. Measurement and instrumentation principles. Butterworth-Heinemann, 2001.
  • 16. Mykyichuk M. Measurement assurance of production quality while producing. Vyzhnytsya, 2014.
  • 17. Mykyichuk M., Ohirko R. and Boyko T. Forecasting errors of industrial thermometers. Automation, measurements and control. Bulletin of Lviv Polytechnic National University, 500, 2004, 36–40.
  • 18. Siemionek E. and Dziubiński M. Testing energy consumption in the trolleybus and the bus on a chosen public transport line in Lublin. Advances in Science and Technology Research Journal, 9(26), 2015, 152–153.
  • 19. Sweet J.N. Establishment of accuracy limits and standards for comparative thermal conductivity measurements. International Journal of Thermophysics, 7(4), 1986, 743–754.
  • 20. Tsai B.K., Gibson C.E., Murthy A.V., Early E.A., Dewitt D.P. and Saunders R.D. Heat-flux sensor calibration. NIST, 2004.
  • 21. Winkelmans M. and Wevers M. Non-destructive testing for corrosion monitoring in chemical plants. Journal of Acoustic Emission, 20, 2002, 206–217.
  • 22. Yatsyshyn S., Mykytyn I., Stadnyk B. and Kolodiy Z. Development of noise measurements. Part 5. miniature gas sensors and their performance. Sensors and Transducers, 154(7), 2013, 223–226.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87b2dde6-d206-4157-9c8e-3136f860ef85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.