PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological tests of the nanomaterials used to reconstruct molars and premolars with the application of the direct method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania tribologiczne nanomateriałów do odbudowy zębów trzonowych i przedtrzonowych metodą bezpośrednią
Języki publikacji
EN
Abstrakty
EN
Physiological abrasion of teeth is a process of gradual loss of the hard tissue of opposite teeth resulting from age-related natural dental wear. In abrasion, the cusps and their slopes in the jaw and the mandible become flattened due to the mechanical load applied. The aim of this paper is to carry out a tribological and microstructural evaluation of modern composite materials used to reconstruct the teeth in the lateral part of the dental arch. Five light-cured composite materials were selected for tests. The tests involved the coefficient of friction and resistance to wear in a sliding contact in the presence of artificial saliva and the microstructure of the external surface of samples before the wear process and in the wear-related damaged area. The test method applied, which combines a biomechanical analysis of resistance to wear and the analysis of the microstructure before the wear process and in the wear-related damaged area, makes it possible to evaluate the tribological properties of composite materials used to reconstruct teeth in the lateral part of the dental arch.
PL
Fizjologiczne starcie zębów jest to proces stopniowej utraty twardych tkanek zębów przeciwstawnych w wyniku naturalnego zużycia postępującego z wiekiem. Starcie to polega na jednoczesnym spłaszczaniu guzków i ich stoków w zębach szczęki i żuchwy w warunkach obciążeń biomechanicznych. Celem pracy jest ocena tribologiczna i mikrostrukturalna nowoczesnych materiałów kompozytowych stosowanych do odbudowy ubytków w bocznym odcinku łuku zębowego. Do badań wybrano 5 materiałów kompozytowych utwardzanych światłem. Przeprowadzono badania współczynnika tarcia i odporności na zużycie w kontakcie ślizgowym, w obecności sztucznej śliny oraz badania mikrostrukturalne warstwy wierzchniej próbek przed procesem zużycia oraz w strefie skazy zużyciowej. Zastosowana metoda badań łącząca biomechaniczną analizę odporności na zużycie z analizą mikrostruktury przed procesem zużycia oraz w skazie zużyciowej pozwala na ocenę właściwości tribologicznych materiałów kompozytowych do odbudowy zębów w bocznym odcinku łuku.
Czasopismo
Rocznik
Tom
Strony
155--164
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, ul. Montelupich 4, 31-155 Cracow, Poland
autor
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, ul. Montelupich 4, 31-155 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical, Laboratory of Coordinate Metrology, al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Ferracane J. L.: Resin composite – state of the art. Dental materials, 27, 1(2011), 29–38.
  • 2. Cramer N. B., Stansbury J. W., Bowman C. N.: Recent advances and developments in composite dental restorative materials. Journal of dental research, 90, 4(2011), 402–416.
  • 3. Demarco F. F., Corrêa M. B., Cenci M. S., Moraes R. R., Opdam N. J.: Longevity of posterior composite restorations: not only a matter of materials. Dental Materials, 28, 1(2012), 87–101.
  • 4. Majewski S.: Contemporary dental prosthetics. Theoretical foundations and clinical practice. Ed. Elsevier, Urban & Partner, Wrocław 2014.
  • 5. Sakaguchi R. L., Powers J. M.: Craig's restorative dental materials. Elsevier Health Sciences, 2012.
  • 6. Addy M., Shellis R. P.: Interaction between attrition, abrasion and erosion in tooth wear. In Dental Erosion, Karger Publishers, 20(2006), 17–31.
  • 7. Bhushan B.: Tribology on the macroscale to nanoscale of microelectromechanical system materials: a review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 215, 1(2001), 1–18.
  • 8. Bianchi E. C., da Silva E. J., Monici R. D., de Freitas C. A., Bianchi A. R. R.: Development of new standard procedures for the evaluation of dental composite abrasive wear. Wear, 253, 5(2002), 533–540.
  • 9. Van der Bilt A., Engelen L., Pereira L. J., Van der Glas H. W., Abbink J. H.: Oral physiology and mastication. Physiology & behavior, 89, 1(2006), 22–27.
  • 10. Chen H., Clarkson B. H., Sun K., Mansfield J. F.: Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. Journal of colloid and interface science, 288, 1(2005), 97–103.
  • 11. Herman M., Ryniewicz A. M., Ryniewicz W.: The analysis of determining factors of enamel resistance to wear. Pt. 1, Identification of biological and mechanical enamel structure and its shape in dental crowns. Engineering of Biomaterials, 13, 95(2010), 10–17.
  • 12. Ryniewicz W., Herman M., Ryniewicz A. M.: The analysis of enamel resistance to wear determining factors. Pt. 2, Study of superficial layer and microhardness in tooth enamel. Engineering of Biomaterials, 14, 102(2011), 23–27.
  • 13. Wieczorek A., Loster J., Ryniewicz W., Ryniewicz A. M.: Dentinogenesis imperfecta: hardness and Young’s modulus of teeth. Acta of bioengineering and biomechanics, 15, 3(2013), 65–69.
  • 14. Dziedzic K., Zubrzycka-Wróbel J., Józwik J., Barszcz M., Siwak P., Chałas R.: Research on tribological properties of dental composite materials. Advances in Science and Technology Research Journal, 10, 32(2016), 144–149.
  • 15. Drummond J.L.: Degradation, fatigue, and failure of resin dental composite materials. Journal of Dental Research, 87, 8(2008), 710–719.
  • 16. Marchesi G., Breschi L., Antoniolli F., Di Lenarda R., Ferracane J., Cadenaro M. : Contraction stress of lowshrinkage composite materials assessed with different testing systems. Dental Materials, 26, 10(2010), 947–953.
  • 17. Hahnel S., Henrich A., Bürgers R., Handel G., Rosentritt M.: Investigation of mechanical properties of modern dental composites after artificial aging for one year. Operative Dentistry, 35, 4(2010), 412–419.
  • 18. Ramalho A., de Carvalho M. B., Antunes P. V. : Effects of temperature on mechanical and tribological properties of dental restorative composite materials.Tribology International, 63(2013), 186–195.
  • 19. Li C., Liu Z., Liu G., Ding Y.: Experimental investigations of mechanical characteristics and tribological mechanisms of nanometric zirconia dental ceramics. Open Materials Science Journal, 5(2011), 178–183.
  • 20. Ayatollahi M. R., Yahya M. Y., Karimzadeh A., Nikkhooyifar M., Ayob A.: Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites. Materials Science and Engineering: C, 54(2015), 69–75.
  • 21. El-Safty S., Akhtar R., Silikas N., Watts D. C.: Nanomechanical properties of dental resin-composites. Dental Materials, 28, 12(2012), 1292–1300.
  • 22. Ryniewicz A. M., Ryniewicz W., Madej T.: The tribological research of the dental materials used in prosthetic reconstructions.Tribologia: tarcie, zużycie, smarowanie, 6(2005), 5–16.
  • 23. Ryniewicz W., Ryniewicz A.: Modelowanie mechaniki kontaktu filarów i uzupełnień protetycznych metodą elementów skończonych.Implantoprotetyka, 1(2004), 31–36.
  • 24. Madej T., Ryniewicz A. M.: The analysis of the abrasive wear and the coefficient of friction biocompatible films have been obtained by chemical vapour deposition (CVD). Acta of Bioengineering and Biomechanics, 4(2003), 708–709.
  • 25. Scientific Compendium CeramX by Dentsplay Sirona company.
  • 26. Materials: R&D Ivoclar Vivadent AG, Schaan, Liechtenstein.
  • 27. Hagner M.: Nanostructure Laboratory, University of Konstanz, 2014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87b13d32-96e6-4e85-8fbc-1d23a4250c85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.