PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical study on indentation properties of cortical bone tissue : Influence of anisotropy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study is to investigate the effect of anisotropy of cortical bone tissue on measurement of properties such as direction-dependent moduli and hardness. Methods: An advanced three-dimensional finite element model of microindentation was developed. Different modelling schemes were considered to account for anisotropy of elastic or/and plastic regimes. The elastic anisotropic behaviour was modelled employing an elasticity tensor, and Hill’s criteria were used to represent the direction-dependent post-yield behaviour. The Oliver–Pharr method was used in the data analysis. Results: A decrease in the value of the transverse elasticity modulus resulted in the increased material’s indentation modulus measured in the longitudinal direction and a decreased one in the transverse direction, while they were insensitive to the anisotropy in post-elastic regime. On the other hand, an increase in plastic anisotropy led to a decrease in measured hardness for both directions, but by a larger amount in the transverse one. The size effect phenomenon was found to be also sensitive to anisotropy. Conclusions: The undertaken analysis suggests that the Oliver–Pharr method is a useful tool for first-order approximations in the analysis of mechanical properties of anisotropic materials similar to cortical bone, but not necessarily for the materials with low hardening reserves in the plastic regime.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
  • Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK
  • Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, LE11 3TU, UK
Bibliografia
  • [1] ABDEL-WAHAB A.A., ALAM K., SILBERSCHMIDT V.V., Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues, J. Mech. Behav. Biomed. Mater, 2011, 4, 807–820.
  • [2] ABDEL-WAHAB A.A., SILBERSCHMIDT V.V., Plastic behaviour of microstructural constituents of cortical bone tissue: A nanoindentation study, I. J. Exp. Comp. Biomech., 2013, 2, 136–157.
  • [3] ALAM K., MITROFANOV A.V., SILBERSCHMIDT V.V., Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone, Med. Eng. Phys., 2011, 33, 234–239.
  • [4] BOLSHAKOV A., PHARR G.M., Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res., 1998, 13, 1049–1058.
  • [5] BUCAILLE J.-L., STAUSS S., FELDER E., MICHLER J., Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater., 2003, 51, 1663–1678.
  • [6] CARNELLI D., GASTALDI D., SASSI V., CONTRO R., ORTIZ C., VENA P., A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue, J. Biomech. Eng., 2010, 132, 081008–081008.
  • [7] CARNELLI D., RICCARDO L., MATTEO P., ROBERTO C., PASQUALE V., Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response, J. Biomech., 2011, 44, 1852–1858.
  • [8] DEMIRAL M., ROY A., EL SAYED T., SILBERSCHMIDT V., Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study, Mater. Sci. Eng. A, 2014, 608, 73–81.
  • [9] DEMIRAL M., ROY A., SILBERSCHMIDT V., Indentation studies in b.c.c. crystals with enhanced model of strain-gradient crystal plasticity, Comput. Mater. Sci., 2013, 79, 896–902.
  • [10] FAN Z., RHO J.Y., SWADENER J.G., PHARR G.M., Threedimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation, J. Mater. Res., 2004, 19, 114–123.
  • [11] FLECK N.A., HUTCHINSON J.W., A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 2001, 49, 2245–2271.
  • [12] HUWALDT J.A., Plot Digitizer 2.4.1., Freeware software distributed from (verified June 2008), 2005.
  • [13] JOHNSON K.L., Contact mechanics, Cambridge University Press, Cambridge, 1974.
  • [14] KAN Q., YAN W., KANG G., SUN Q., Oliver–Pharr indentation method in determining elastic moduli of shape memory alloys – a phase transformable material, J. Mech. Phys. Solids, 2013, 61, 2015–2033.
  • [15] KARACA F., AKSAKAL B., Effects of various drilling parameters on bone during implantology: An in vitro experimental study, Acta Bioeng. Biomech., 2013, 15, 25–32.
  • [16] LIU D., WEINER S., WAGNER H.D., Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens, J. Biomech., 1999, 32, 647–654.
  • [17] MULLINS L.P., MCGARRY J.P., BRUZZI M.S., MCHUGH P.E., Micromechanical modelling of cortical bone, Comp. Methods Biomech. Biomed. Eng., 2007, 10, 159–169.
  • [18] OLIVER W.C., PHARR G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, 19, 3–20.
  • [19] ÖZKAN A., ATMACA H., MUTLU İ., ÇELIK T., UĞUR L., KIŞIOĞLU Y., Stress distribution comparisons of foot bones in patient with tibia vara: a finite element study, Acta Bioeng. Biomech., 2013, 15, 67–72.
  • [20] REILLY D.T., BURSTEIN A.H., FRANKEL V.H., The elastic modulus for bone, J. Biomech., 1974, 7, 271–275.
  • [21] RHO J.-Y., ROY M.E., TSUI T.Y., PHARR G.M., Elastic properties of microstructural components of human bone tissue as measured by nanoindentation, J. Biomed. Mater. Res., 1999, 45, 48–54.
  • [22] SEZEK S., AKSAKAL B., KARACA F., Influence of drill parameters on bone temperature and necrosis: A FEM modeling and in vitro experiments, Comput. Mater. Sci., 2012, 60, 13–18.
  • [23] Systèmes, Dassault. “Abaqus 6.10: Analysis user’s manual”. Providence, RI: Dassault Systèmes Simulia Corp, 2010.
  • [24] TALJAT B., PHARR G.M., Development of pile-up during spherical indentation of elastic–plastic solids, I. J. Solids Struct., 2004, 41, 3891–3904.
  • [25] WANG X.J., CHEN X.B., HODGSON P.D., WEN C.E., Elastic modulus and hardness of cortical and trabecular bovine bone measured by nano-indentation, Trans. Nonferr. Metals Soc. China, 2006, 16, 744–748.
  • [26] WEINER S., ADDADI L., WAGNER H.D., Materials design in biology, Mater. Sci. Eng.C, 2000, 11, 1–8.
  • [27] ZAAFARANI N., RAABE D., SINGH R.N., ROTERS F., ZAEFFERER S., Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations, Acta Mater., 2006, 54, 1863–1876.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87aee930-d37e-4308-ace8-762a2c52135c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.