PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changing Arctic. Firm scientific evidence versus public interest in the issue. Where is the gap?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors provide hard evidence for a significant environmental impact of long-distance atmospheric pollution advection to the Arctic. Results from literature and of their research show that the atmospheric inflow of pollution to the Arctic has been increasing over the decades. The authors show evidence that biomass burning has a greater potential impact on radiative budget of the region than the well-known spring Arctic Haze phenomenon, which has always been regarded as the most prominent atmospheric pollution manifestation in the Arctic. Warming, which is observed in the Arctic, results in decreasing ice coverage of the region, which in turn, leads to the major changes in the ecosystem, hence affects human well-being. At the same time, the authors present results of two independent studies, dedicated to the recognition of the awareness and the level of interest of people in eight Arctic countries and among young learners in Poland. The results show that not only the level of public interest is low, but it is both decreasing or, at the best, low to societies. This is in strong contradiction to information available and the daily experience of the societies, which inhabit the region. The authors believe, that such contradiction results from a low level of knowledge and interest of the Arctic and the climate change itself. Finally, the authors provide some hints on how to link hard scientific evidence for Arctic environmental changes with proper communication to the general public, and hence to increase the level of interest among citizens.
Czasopismo
Rocznik
Strony
593--602
Opis fizyczny
Bibliogr. 56 poz., tab., wykr.
Twórcy
  • Instytute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
  • Instytute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
autor
  • GEMMA and POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
  • Today We Have, Sopot, Poland
  • Instytute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
Bibliografia
  • [1] ACIA, 2005. Arctic Climate Impact Assessment. Cambridge Univ. Press, Cambridge, U.K., 1020 pp.
  • [2] Arctic Council, 2013. Arctic Resilience. Interim Report, Centre SEIaSR (ed), Stockholm, https://oaarchive.arctic-council.org/handle/11374/1628, (accessed on March 2020).
  • [3] Arctic NGO Forum, http://arcticngoforum.org/, (accessed on July 2019).
  • [4] Barrie, L. A., Hoff, R. M., 1985. Five years of air chemistry observations in the Arctic. Atmos. Environ. 19 (12), 1995-2010, https://doi.org/10.1016/0004-6981(85)90108-8.
  • [5] Bray, B., France, B., Gilbert, J. K., 2012. Identifying the essentials elements of effective science communication: what do the experts say?. Int. J. Sci. Educ. Pt. B, 2, 23-41.
  • [6] Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., Wollny, A. G., 2011. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmos. Chem. Phys. 11 (6), 2423-2453, https://doi.org/10.5194/acp-11-2423-2011.
  • [7] Brock, C. A., Radke, L. F., Lyons, J. H., Hobbs, P. V., 1989. Arctic hazes in summer over Greenland and the North American Arctic, I, Incidence and origins. J. Atmos. Chem. 9 (1-3), 129-148.
  • [8] Corbett, J. J., Lack, D. A., Winebrake, J. J., Harder, S., Silberman, J. A., Gold, M., 2010. Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys. 10 (19), 9689-9704, https://doi.org/10.5194/acp-10-9689-2010.
  • [9] Eckhardt, S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A., Stohl, A., 2013. The influence of cruise ship emissions on air pollution in Svalbard — a harbinger of a more polluted Arctic? Atmos. Chem. Phys. 13 (16), 8401-8409, https://doi.org/10.5194/acp-13-8401-2013.
  • [10] Ferrero, L., Cappelletti, D., Busetto, M., Mazzola, M., Lupi, A., Lanconelli, C., Becagli, S., Traversi, R., Caiazzo, L., Giardi, F., Morini, B., Crocchianti, S., Fierz, M., Mocnik, G., Sangiorgi, G., Perrone, M. G., Maturilli, M., Vitale, V., Udisti, R., Bolzacchini, E., 2016. Vertical profiles of aerosol and black carbon in the Arctic: A seasonal phenomenology along 2 years (2011-2012) of field campaigns. Atmos. Chem. Phys. 16 (19), 12601-12629.
  • [11] Ferrero, L., Castelli, M., Ferrini, B. S., Moscatelli, M., Perrone, M. G., Sangiorgi, G., Rovelli, G., D’Angelo, L., Moroni, B., Scardazza, F., Mocnik, G., Bolzacchini, E., Petitta, M., Cappelletti, D., 2014. Impact of Black Carbon Aerosol over Italian basin valleys: high resolution measurements along vertical profiles, radiative forcing and heating rate. Atmos. Chem. Phys. 14 (18), 9641-9664, https://doi.org/10.5194/acp-14-9641-2014.
  • [12] Ferrero, L., Močnik, G., Cogliati, S., Gregorič, A., Colombo, R., Bolzacchini, E., 2018. Heating rate of light absorbing aerosols: time-resolved measurements and source-identification. Environ. Sci. Technol. 52, 3546-3555, https://doi.org/10.1021/acs.est.7b04320.
  • [13] Ferrero, L., Mocnik, G., Ferrini, B. S., Perrone, M. G., Sangiorgi, G., Bolzacchini, E., 2011a. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci. Total Environ. 409 (14) 2824-2837, https://doi.org/10.1016/j.scitotenv.2011.04.022.
  • [14] Ferrero, L., Riccio, A., Perrone, M. G., Sangiorgi, G., Ferrini, B. S., Bolzacchini, E., 2011b. Mixing height determination by tethered balloon-based particle soundings and modeling simulations. Atmos. Res. 102 (1-2), 145-156, https://doi.org/10.1016/j.atmosres.2011.06.016.
  • [15] Ferrero, L., Ritter, C., Cappelletti, D., Moroni, B., Mocnik, G., Mazzola, M., Lupi, A., Becagli, S., Traversi, R., Cataldi, M., Neuber, R., Vitale, V., Bolzacchini, E., 2019b. Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles. Sci. Total Environ. 686, 452-467, https://doi.org/10.1016/j.scitotenv.2019.05.399.
  • [16] Ferrero, L., Sangiorgi, G., Perrone, M., Rizzi, C., Cataldi, M., Markuszewski, P., Pakszys, P., Makuch, P., Petelski, T., Becagli, S., Traversi, R., Udisti, R., Bolzacchini, E., Zielinski, T., 2019a. Chemical composition of aerosol over the Arctic Ocean from two years of summer AREX cruise: ions, amines, EC/OM, PAHs, n-alkanes, and metals results from two years of summer AREX cruise. Atmosphere 10 (2), p. 54, https://doi.org/10.3390/atmos10020054.
  • [17] Flanner, M. G., 2013. Arctic climate sensitivity to local black carbon. J. Geophys. Res.-Atmos. 118 (4), 1840-1851, https://doi.org/10.1002/jgrd.50176.
  • [18] Francis, J. A., Hunter, E., 2006. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 87 (46), 509-511, https://doi.org/10.1029/2006EO460001.
  • [19] Granier, C., Niemeier, U., Jungclaus, J. H., Emmons, L., Hess, P., Lamarque, J.-F., Walters, S., Brasseur, G. P., 2006. Ozone pollution from future ship traffic in the Arctic northern passages. Geophys. Res. Lett. 33 (13), art. no. L13807, https://doi.org/10.1029/2006GL026180.
  • [20] Hansen, J., Nazarenko, L., 2004. Soot Climate Forcing via Snow and Ice Albedo. Proc. Natl. Acad. Sci. 101 (2), 423-428, https://doi.org/10.1073/pnas.2237157100.
  • [21] Hovelsrud, G. K., Poppel, B., van Oort, B., Reist, J. D., 2011. Arctic Societies, Cultures, and Peoples in a Changing Cryosphere. Ambio 40 (1), 100-110, https://doi.org/10.1007/s13280-011-0219-4.
  • [22] Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., Moritz, R. E., 2002. Annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107 (C10), SHE-13, https://doi.org/10.1029/2000JC000439.
  • [23] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Cambridge Univ. Press, Cambridge, U.K., New York, USA, 1552 pp.
  • [24] IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp.
  • [25] Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson, J. R., Fisher, J. A., 2010. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results. Atmos. Chem. Phys. 10 (11), 5191-5212, https://doi.org/10.5194/acp-10-5191-2010.
  • [26] Jacobson, M. Z., 2010. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. J. Geophys. Res. 115 (114), art. no. D14209, https://doi.org/10.1029/2009JD013795.
  • [27] Kerr, R., 2007. Is Battered Arctic Sea Ice Down for the Count? Science 318 (5847), 33-34, https://doi.org/10.1126/science.318.5847.33a.
  • [28] Kotynska-Zielinska, I., Papatahnasiou, M., 2018. Examples of innovative approaches to educate about environmental issues within and outside of classroom. In: Zielinski, ´T., Sagan, I., Surosz, W. (Eds.), Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences Ser., Springer, Cham, 17-29, https://doi.org/10.1007/978-3-319-71788-3_3.
  • [29] Kupiszewski, P., Leck, C., Tjernström, M., Sjogren, S., Sedlar, J., Graus, M., Müller, M., Brooks, B., Swietlicki, E., Norris, S., Hansel, A., 2013. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer. Atmos. Chem. Phys. 13 (24), 12405-12431, https://doi.org/10.5194/acp-13-12405-2013.
  • [30] Nquyen, T., Williams, T., 2012. The Arctic: Organizations Involved in Circumpolar Cooperation, Publication no. 2008-15-E, Parliamentary Information and Research Service, Library of Parliament, Ottawa, https://lop.parl.ca/staticfiles/PublicWebsite/Home/ResearchPublications/InBriefs/PDF/2008-15-e.pdf.
  • [31] Ødemark, K., Dalsøren, S. B., Samset, B. H., Berntsen, T. K., Fuglestvedt, J. S., Myhre, G., 2012. Short-lived climate forcers from current shipping and petroleum activities in the Arctic. Atmos. Chem. Phys. 12 (4), 1979-1993, https://doi.org/10.5194/acp-12-1979-2012.
  • [32] Pakszys, P., Zielinski, T., 2017. Aerosol optical properties over Svalbard: a comparison between Ny-Ålesund and Hornsund. Oceanologia 59 (4), 431-444, https://doi.org/10.1016/j.oceano.2017.05.002.
  • [33] Pakszys, P., 2018. Horizontal variability of aerosol optical properties over the European Arctic. Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland Ph.D. thesis.
  • [34] Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., Warren, S. G., 2008. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 8 (6), 1723-1735, https://doi.org/10.5194/acp-8-1723-2008.
  • [35] Radke, L. F., Lyons, J. H., Hegg, D. A., Hobbs, P. V., Bailey, I. H., 1984. Airborne observations of Arctic aerosols, I, Characteristics of Arctic haze. Geophys. Res. Lett. 11 (5), 393-396.
  • [36] Ramana, M. V, Ramanathan, V., Kim, D., Roberts, G. C., Corrigan, C. E., 2007. Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Q. J. Roy. Meteor. Soc. 133 (629), 1913-1931, https://doi.org/10.1002/qj.172.
  • [37] Rethinking the top of the world, 2015. Rethinking the top of the world: Arctic security public opinion survey, vol. 2, The Gordon Foundation, Munk-Gordon Arctic Security Program, Institute of the North, 70 pp., http://gordonfoundation.ca/app/uploads/2017/03/APO_Survey_Volume-2_WEB.pdf.
  • [38] Samset, B. H., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki, N., Koike, M., Oshima, N., Schwarz, J. P., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., Bian, H., Chin, M., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Schulz, M., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Zhang, K., 2014a. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos. Chem. Phys. 14 (14), 20083-20115, https://doi.org/10.5194/acpd-14-20083-2014.
  • [39] Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Zhang, K., 2013. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys. 13 (5), 2423-2434, https://doi.org/10.5194/acp-13-2423-2013.
  • [40] Sand, M., Berntsen, T. K., Kay, J. E., Lamarque, J. F., Seland, Ø., Kirkevåg, A., 2013. The Arctic response to remote and local forcing of black carbon. Atmos. Chem. Phys. 13 (1), 211-224, https://doi.org/10.5194/acp-13-211-2013.
  • [41] Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P., Schulz, M., Davis, S. M., Wofsy, S. C. l, Fahey, D. W., 2010. Globalscale black carbon profiles observed in the remote atmosphere and compared to models. Geophys. Res. Lett. 37 (18), art. no. L18812, https://doi.org/10.1029/2010GL044372.
  • [42] Screen, J. A., Simmonds, I., 2010a. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334-1337, https://doi.org/10.1038/nature09051.
  • [43] Screen, J. A., Simmonds, I., 2010b. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37 (16), art. no. L16707, https://doi.org/10.1029/2010GL044136.
  • [44] Seinfeld, J. H., Pandis, S. N., 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edn., John Wiley & Sons, 1152 pp.
  • [45] Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., Trenberth, K. E., 2007. The large-scale energy budget of the Arctic. J. Geophys. Res. 112 (D11), art. no. D11122, https://doi.org/10.1029/2006JD008230.
  • [46] Serreze, M. C., Barry, R. G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change 77 (1-2), 85-96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
  • [47] Shaw, G. E., 1995. The Arctic haze phenomenon. B. Am. Meteorol. Soc. 76 (12), 2403-2413, https://doi.org/10.1175/1520-0477(1995)076%3C2403:TAHP%3E2.0.CO;2.
  • [48] Shindell, D., Faluvegi, G., 2009. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2 (4), 294-300, https://doi.org/10.1038/ngeo473.
  • [49] Shindell, D., Kuylenstierna, J. C. I., Vignati, E., Van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Kim Oanh, N. T., Milly, G., Williams, M., Demkine, V., Fowler, D., 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335 (6065), 183-189, https://doi.org/10.1126/science.1210026.
  • [50] Stocklmayer, S. M, Bryant, C., 2012. Science and the Public — What should people know? Int. J. Sci. Educ. Pt. B 2 (1), 81-101, https://doi.org/10.1080/09500693.2010.543186.
  • [51] Stohl, A., 2006. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. 111 (D11), art. no. D11306, https://doi.org/10.1029/2005JD006888.
  • [52] Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C., Dutton, E. G., Liu, P. S. K., Li, S.-M., Dethloff, K., Lampert, A., Ritter, C., Stock, M., Neuber, R., Maturilli, M., 2010. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAMARCMIP, April 2009. J. Geophys. Res.-Atmos. 115 (D13), art. no. D13203, https://doi.org/10.1029/2009jd013605.
  • [53] Vavrus, S., Waliser, D., Schweiger, A., Francis, J. A., 2009. Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Climate Dyn. 33, 1099-1115, https://doi.org/10.1007/s00382-008-0475-6.
  • [54] Walker, G., 2007. A world melting from the top down. Nature 446, 718-721, https://doi.org/10.1038/446718a.
  • [55] Yang, X.-Y., Fyfe, J. C., Flato, G. M., 2010. The role of poleward energy transport in Arctic temperature evolution. Geophys. Res. Lett. 37 (14), art. no. L14803, https://doi.org/10.1029/2010GL043934.
  • [56] Zielinski, T., Petelski, T., Strzalkowska, A., Pakszys, P., Makuch, P., 2016. Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties. Oceanologia 58 (1), 13-24, https://doi.org/10.1016/j.oceano.2015.07.005, https://www.sciencedirect.com/science/article/pii/S0078323415001074.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87a0c5f9-2f18-4253-bd92-344520933597
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.