Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, a definition of a b(αn,βn) -best approximations of b(αn,βn)-hypermetric spaces over Banach algebras is given. Our objective is to prove the concept of extension of fixed point theorems in n -ary orthogonal b(αn,βn)-hypermetric spaces over Banach algebras.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220200
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
autor
- Faculty of Hotel Management and Tourism, University of Kragujevac, 36210 Vrnjacka Banja, Serbia; Faculty of Business and Law, University ″MB″, 11000 Belgrade, Serbia
autor
- School of Electrical and Computer Engineering of Applied Studies, Academy of Technical and Art Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia
autor
- Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia
Bibliografia
- [1] S. Aleksić, Z. Kadelburg, Z. D. Mitrović, and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93–121
- [2] I. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
- [3] V. Berinde, Generalized Contractions in Quasimetric Spaces, Seminar on Fixed Point Theory, Babes-Bolyai, University, vol. 3, issue 9, 1993, p. 3–9.
- [4] N. Bourbaki, Topologie Generale; Herman, Paris, France, 197–4.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.
- [6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- [7] P. Debnath, N. Konwar, and S. Radenović, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Science, Springer Verlag, Singapore, 2021.
- [8] A. D. Nezhad, S. Beizavi, and S. H. Hekmatimoghaddam, New Clustering Algorithm for Classification of Brain MRI Regions by using m-Universal Metric Technique, Malaysian J. Math. Sci. 12 (2018), no. 1, 85–98.
- [9] A. D. Nezhad, A. R. Forough, N. Mirkov, and S. Radenović, A new version of Un-hypermetric space results, Vojnotehni čki Glasnik/Military Technical courier, vol. 69, Issue 3, 2021, p. 562–577.
- [10] A. Dehghan Nezhad and H. Mazaheri, New results in G-best approximation in G-metric spaces, Ukrainian Math. J. 62 (2010), no, 4, 648–654.
- [11] M. Eshagahi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, IJ. Linear Topol. Algebra, 6 (2017), 251–260.
- [12] J. Fernandez, N. Malviya, S. Radenović, and K. Saxena, F-cone metric spaces over Banach algebra, Fixed Point Theory Appl. 7 (2017), 18.
- [13] J. Fernandez, N. Malviya, A. Savic, M. Paunovic, and Z. D. Mitrovic, The extended cone b-metric-like spaces over Banach algebra and some applications, Mathematics 10 (2022), no. 149. DOI: https://doi.org/10.3390/math10010149.
- [14] J. Fernandez, N. Malviya, Z. D. Mitrovic, A. Hussain, and V. Parvaneh. Some fixed point results on Nb-cone metric spaces over Banach algebra, Adv. Differ. Equ. 529 (2020), DOI: https://doi.org/10.1186/s13662-020-02991-5.
- [15] L. Huang and X, Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
- [16] T. Kamran, M. Samreen, and Q. Ul. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics 5 (2017), 1–7, DOI: https://doi.org/10.3390/math5020019.
- [17] K. A. Khan, On the possibility of n topological spaces, Int. J. Math. Arch. 3 (2012), no. 6, 2520–2523.
- [18] K. A. Khan, Generalized n-metric spaces and fixed point theorems, J. Nonlinear Convex Anal. 15 (2014), no. 6, 1221–1229.
- [19] Moosa Gabeleh and Naseer Shahzad, Best proximity points, cyclic Kannan maps and geodesic metric spaces, J. Fixed Point Theory Appl. 18 (2016), 167–188.
- [20] H. Nawab, J. R. Roshan, V. Parvaneh, and A. Latif, A unification of G-metric, partial metric, and b-metric spaces, Abstract Appl. Anal. 2014 (2014), 1–14, DOI: https://doi.org/10.1155/2014/180698.
- [21] S. Radenović and B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl. 57 (2009), 1701–1707.
- [22] W. Rudin, Functional Analysis, 2nd edn. McGraw-Hill, New York, 1991.
- [23] V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature, Switzerland AG, 2019.
- [24] E. Zeidler, Nonlinear functional analysis and its applications, I - Fixed-Point Theorems, Springer-Verlag, New York, 1986.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879fad64-3dca-466d-ae65-198b0c7c63b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.