Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The synergistic effect of prepared tool edge and cutting parameters in hard whirling is still unclear, limiting its application in producing large precision ball screws. This paper aims to reveal the effect mechanism of cutting parameters and edge geometries in the whirling process to improve the stability of ball screw quality. A novel cutting force measurement strategy is proposed, and a systematic study of cutting force, surface quality and tool wear is implemented. The results show that small feed (less than 0.15 mm) and high cutting speed (more than 180 m/min) can ensure machining efficiency and improve surface quality. The machining quality can be improved when the edge radius is 10 µm, and the chamfer size is 0.1 mm × 20◦ . The tool with a 30 µm edge radius has a low probability of early failure, but the later wear is severe and timely sharpening is recommended. This study could guide cutting parameters and edge geometry optimization to improve the stability of the quality in hard whirling.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
399--417
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering, Yancheng Institute of Technology Yancheng 224051, China
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University Taizhou 318000, China
autor
- School of Mechanical Engineering, Yancheng Institute of Technology Yancheng 224051, China
autor
- School of Mechanical Engineering, Yancheng Institute of Technology Yancheng 224051, China
autor
- School of Mechanical Engineering, Yancheng Institute of Technology Yancheng 224051, China
autor
- School of Mechanical Engineering, Yancheng Institute of Technology Yancheng 224051, China
autor
- College of Mechanical and Electrical Engineering Nanjing University of Aeronautics & Astronautics Nanjing, 210016, China
autor
- Department of Precision Manufacturing Engineering Suzhou Vocational Institute of Industrial Technology Suzhou, 215104, China
Bibliografia
- 1. Matsumura T., Serizawa M., Ogawa T., Sasaki M., Surface dimple machining in whirling, Journal of Manufacturing Systems, 37(2): 487–493, 2015, doi: 10.1016/j.jmsy. 2014.07.008.
- 2. Kennedy B., Whirled piece, Cutting Tool Engineering Magazine, 57(4): 28–34, 2005.
- 3. Son J.H., Han C.W., Kim S.I., Jung H.C., Lee Y.M., Cutting forces analysis in whirling process, International Journal of Modern Physics B, 24(15–16): 2786–2791, 2010, doi: 10.1142/S0217979210065635.
- 4. Lee M.H., Kang D.B., Son S.M., Ahn J.H., Investigation of cutting characteristics for worm machining on automatic lathe – Comparison of planetary milling and side milling, Journal of Mechanical Science and Technology, 22(12): 2454–2463, 2008, doi: 10.1007/s12206-008-0713-1.
- 5. Liu C., He Y., Wang Y.L., Li Y., Wang S., Wang L., Wang Y., An investigation of surface topography and workpiece temperature in whirling milling machining, International Journal of Mechanical Sciences, 164: 105182, 2019, doi: 10.1016/j.ijmecsci.2019.105182.
- 6. He Y., Liu C., Wang Y.L., Li Y., Wang S., Wang L., Wang Y., Analytical modeling of temperature distribution in lead-screw whirling milling considering the transient undeformed chip geometry, International Journal of Mechanical Sciences, 157–158: 619– 632, 2019, doi: 10.1016/j.ijmecsci.2019.05.008.
- 7. Guo Q., Chang L., Ye L., Wang Y., Feng H., Cao Y., Lian Q., Li Y., Residual stress, nanohardness, and microstructure changes in whirlwind milling of GCr15 steel, Materials and Manufacturing Processes, 28(10): 1047–1052, 2013, doi: 10.1080/ 10426914.2013.763963.
- 8. Guo Q., Ye L., Wang Y.L., Feng H., Li Y., Comparative assessment of surface roughness and microstructure produced in whirlwind milling of earing steel, Machining Science and Technology, 18(2): 251–276, 2014, doi: 10.1080/10910344.2014.897843.
- 9. Liu C., He Y., Li Y.F., Wang Y., Wang S., Wang Y., Modeling of residual stresses by correlating surface topography in machining of AISI 52100 steel, Journal of Manufacturing Science and Engineering, 144(5): 051008, 2022, doi: 10.1115/1.4052706.
- 10. Guo Q., Wang M.L., Xu Y.F., Wang Y., Minimization of surface roughness and tangential cutting force in whirlwind milling of a large screw, Measurement, 152(3): 107256, 2019, doi: 10.1016/j.measurement.2019.107256.
- 11. Liu C., He Y., Li Y.F., Wang Y., Wang L., Wang S., Wang Y., Predicting residual properties of ball screw raceway in whirling milling based on machine learning, Measurement: Journal of the International Measurement Confederation, 173: 108605, 2020, doi: 10.1016/j.measurement.2020.108605.
- 12. Wang Y.L., Yin C., Li L., Zha W., Pu X., Wang Y., Wang J., He Y., Modeling and optimization of dynamic performances of large-scale lead screws whirl milling with multipoint variable constraints, Journal of Materials Processing Technology, 276(1): 116392, 2019, doi: 10.1016/j.jmatprotec.2019.116392.
- 13. He Y., Wang L.X., Wang Y.L., Li Y., Wang S, Wang Y., Liu C., Hao C., An analytical model for predicting specific cutting energy in whirling milling process, Journal of Cleaner Production, 240: 118181, 2019, doi: 10.1016/j.jclepro.2019.118181.
- 14. Zhu H.Y., Ni S.Y., Li Y., Experimental study and design for PCBN tools used in largescale thread hard whirling, Manufacturing Technology & Machine Tool, (6): 93–95, 2014.
- 15. Denkena B., Biermann D., Cutting edge geometries, CIRP Annals – Manufacturing Technology, 63(2): 631–653, 2014, doi: 10.1016/j.cirp.2014.05.009.
- 16. Wu X., Li L., He N., Yao C., Zhao M., Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting, Precision Engineering, 45: 359– 364, 2016, doi: 10.1016/j.precisioneng.2016.03.012.
- 17. Ventura C.E.H., Chaves H.S., Campos Rubio J.C., Abrao˜ A.M., Denkena B., Breidenstein B., The influence of the cutting tool microgeometry on the machinability of hardened AISI 4140 steel, The International Journal of Advanced Manufacturing Technology, 90(9): 2557–2565, 2017, doi: 10.1007/s00170-016-9582-4.
- 18. Klocke F., Kratz H., Advanced tool edge geometry for high precision hard turning, CIRP Annals – Manufacturing Technology, 54(1): 47–50, 2005, doi: 10.1016/S0007- 8506(07)60046-8.
- 19. Rech J., Yen Y.C., Schaff M.J., Hamdi H., Altan T., Bouzakis K.D., Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts, Wear, 259(7–12): 1168–1176, 2005, doi: 10.1016/j.wear.2005.02.072.
- 20. Endres W.J., Kountanya R.K., The effects of corner radius and edge radius on tool flank wear, Journal of Manufacturing Processes, 4(2): 89–96, 2002, doi: 10.1016/S1526- 6125(02)70135-7.
- 21. Kang Z., Experimental research on turning process and surface integrity with minimum quantity lubrication [in Chinese], PhD thesis, Shanghai Jiao Tong University, 2011.
- 22. Qian L., Hossan M.R., Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts, Journal of Materials Processing Technology, 191(1–3): 274–278, 2007, doi: 10.1016/j.jmatprotec.2007.03.022.
- 23. Chen R.Y., Metal Cutting Principle, 2nd ed., Machinery Industry Press, 2002.
- 24. Ozlu E., Budak E., Molinari A., Analytical and experimental investigation of rake contact and friction behavior in metal cutting, International Journal of Machine Tools & Manufacture, 49(11): 865–875, 2009, doi: 10.1016/j.ijmachtools.2009.05.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879d865c-ceb1-41ea-b073-ac86234200fe