PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multivariate spatial analysis of groundwater quality using copulas

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quality and quantity of groundwater resources are often assessed by sampling a limited number of wells drilled sparsely across a plain. So far, various methods have been developed for assessing and modeling groundwater quality, each of which has its capabilities and limitations. In the present study, the copula functions were applied to multivariate analysis of groundwater quality variables (including SAR, K, Mg, Na, Ca, Cl, EC, pH, TDS, SO4, TH and HCO3) in Shahrekord plain, Iran. For this purpose, the quality data from 24 wells distributed across the Shahrekord plain during the period of 1990-2020 were used. For bivariate analyses of groundwater quality, first the fitness of some common distributions in hydrology were examined to the quality variables and the appropriate marginal distribution was determined by Kolmogorov-Smirnov test (K-S). The results revealed that the Generalized Extreme Value distribution has an acceptable fitness on groundwater quality variables of Shahrekord plain. The results of correlation analysis indicated that the highest correlation based on Spearman Rho, Kendall Tau and Pearson correlation coefficient is related to the paired variables of SAR-Na and EC-TDS with correlation coefficient greater than 0.9. Therefore, these variables were selected for further analysis. In the next step, bivariate distribution of two different quality variables in a well (point analysis) and also bivariate distribution of a quality variable in two different wells (inter-well analysis) were created using copula functions. To do this, the fitness of different copulas (including Plackett, Joe, Clayton, Frank, Farlie-Gumbel-Morgenstern, Ali-Mikhail-Haq, Gumbel, Gumbel-Hougaard, Gumbel-Barnett, Philip-Gumbel and Galambos) was tested to construct a bivariate distribution of quality variables. For choosing the best fitted copula on studied paired variables, the theoretical copula values was compared with the corresponding values of empirical copula based on the goodness of fit criteria. Based on the results of point analysis, the Joe copula function was chosen as the best fitted copula function for multivariate analysis of two quality variables in a well. For inter-well analysis (IWA), the Clayton copula function was selected for creating bivariate distribution of a quality variable in two different wells. Comparing the performance of the proposed IWA method with geostatistical methods showed that in addition to the IWA method having acceptable accuracy, it has a higher efficiency than geostatistical methods, especially in areas where the number of sampling wells is less.
Czasopismo
Rocznik
Strony
1113--1125
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • Department of Water Engineering, Shahrekord University, Shahrekord, Iran
  • Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • Department of Water Engineering, Shahrekord University, Shahrekord, Iran
Bibliografia
  • 1. Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44(2):182-198 Abdi A, Hassanzadeh Y, Talatahari S, Fakheri-Fard A, Mirabbasi R (2017) Regional bivariate modeling of droughts using L-como-ments and copulas. Stoch Env Res Risk Assess 31(5):1199-1210 Akaike H (1974) A new look at Statistical Model Identification. IEEE Trans Autom Control 19:716-723
  • 2. Amini S, Zare Bidaki R, Mirabbasi R, Shafaei M (2022) Flood risk analysis based on nested copula structure in Armand Basin. Iran Acta Geophysica 70:1385-1399
  • 3. Atique F, Attoh-Okine N (2018) Copula parameter estimation using Bayesian inference for pipe data analysis. Can J Civ Eng 45(1):61-70
  • 4. Ayantobo OO, Li Y, Song S (2018) Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961-2013. Theor Appl Climatol 137(3):2217-2237
  • 5. Ayantobo OO, Li Y, Song S (2019) Multivariate drought frequency analysis using four-variate symmetric and asymmetric archimedean copula functions. Water Resour Manage 33:103-127
  • 6. Bahrami M, Zarei AR (2023) Assessment and modeling of groundwater quality for drinking, irrigation, and industrial purposes using water quality indices and GIS technique in fasarud aquifer (Iran). Model Earth Syst Environ. https://doi.org/10.1007/ s40808-023-01725-2
  • 7. Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. J Water Resour Res 42(11):1-12
  • 8. Bárdossy A (2011) Interpolation of groundwater quality parameters with some values below the detection limit. Hydrol Earth Syst Sci 15(9):2763-2775
  • 9. Bárdossy A, Hörning S (2016) Gaussian and non-Gaussian inverse modeling of groundwater flow using copulas and random mixing. Water Resour Res 52(6):4504-4526
  • 10. Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res. https://doi.org/10.1029/2007WR006115
  • 11. Chai Y, Xiao C, Li M, Liang X (2020) Hydrogeochemical characteristics and groundwater quality evaluation based on multivariate statistical analysis. Water 12(10):2792
  • 12. Chen S, Tang Z, Wang J, Wu J, Yang C, Kang W, Huang X (2020) Multivariate analysis and geochemical signatures of shallow groundwater in the main urban area of Chongqing, southwestern China. Water 12(10):2833
  • 13. Das P, Begam S, Singh M (2017) Mathematical modeling of groundwater contamination with varying velocity field. J Hydrol Hydro-mech 65(2):192-204
  • 14. De Michele C, Salvadori G (2003) A generalized Pareto intensityduration model of storm rainfall exploiting 2-copulas. J Geophys Res 108(D2):4067
  • 15. Fang Y, Zheng T, Zheng X, Peng H, Wang H, Xin J, Zhang B (2020) Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques. J Environ Manage 273:111185
  • 16. Ganjalikhani M, Zounemat-Kermani M, Rezapour M, Rahnama MB (2016) Evaluation of copula performance in groundwater quality Zoning (case study: Kerman and Ravar regions). Iran J Soil Water Res 47(3):551-560. https://doi.org/10.22059/ijswr.2016.59325
  • 17. Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034-1043
  • 18. Gräler B, Pebesma E (2011) The pair-copula construction for spatial data: a new approach to model spatial dependency. Procedia Environ Sci 7(1):206-211
  • 19. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London, p 399
  • 20. Justel A, Pena D, Zamar R (1997) A multivariate Kolmogorov-Smirnov test of goodness of fit. Statist Probab Lett 35(3):251-259
  • 21. Kumar R, Gautam HR (2013) Mitigation of groundwater depletion hazards in India. Curr Sci 104(10):1271
  • 22. Lalehzari R, Tabatabaei SH (2020) Discussion of “coupled groundwater drought and water scarcity index for intensively overdrafted aquifers” by Hamid Sanginabadi, Bahram Saghafian, and Majid Delavar. J Hydrol Eng 25(2):07019005
  • 23. Mirabbasi R, Mazloumzadeh SM, Rahnama MB (2008) Evaluation of irrigation water quality using fuzzy logic. Res J Environ Sci 2(5):340-352
  • 24. Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the Copula method. Theoret Appl Cli-matol 108:191-206
  • 25. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. A discussion of principles. J Hydrol 10:282-290
  • 26. Nazeri TM, De RY, Michele C, Mirabbasi R (2022) Application of copula functions for bivariate analysis of rainfall deficiency and river flow deficiency in Siminehrood River Basin Iran. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002207
  • 27. Nelsen RB (2006) An introduction to copulas. Springer, New York, p 269
  • 28. Omidi M, Mohammadzadeh M (2018) Spatial interpolation using copula for non-Gaussian modeling of rainfall data. J Iran Stat Soc 17(2):165-179
  • 29. Pandey PK, Das L, Jhajharia D, Pandey V (2018) Modelling of interdependence between rainfall and temperature using copula. Modeling Earth Syst Environ 4:867-879
  • 30. Requena AI, Mediero L, Garrote L (2013) A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. J Hydrol Earth Syst Sci 17:3023-3038
  • 31. Saghafian B, Sanginabadi H (2020) Multivariate groundwater drought analysis using copulas. Hydrol Res 51(4):666-685
  • 32. Saghebian SM, Sattari MT, Mirabbasi R, Pal M (2014) Ground water quality classification by decision tree method in Ardebil region Iran. Arab J Geosci 7(11):4767-4777. https://doi.org/10.1007/ s12517-013-1042-y
  • 33. Salem IB, Nazzal Y, Howari FM, Sharma M, Mogaraju JK, Xavier CM (2022) Geospatial assessment of groundwater quality with the distinctive portrayal of heavy metals in the United Arab Emirates. Water 14:879. https://doi.org/10.3390/w14060879
  • 34. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461-464
  • 35. Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manage 20:795-815
  • 36. Silva MI, Gonęalves AML, Lopes WA, Lima MTV, Costa CTF, Paris M, De Paula FFJ (2021) Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. J Hydrol 598:126346 Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229-231
  • 37. Tosunoglu F, Gürbüz F, ispirli MN (2020) Multivariate modeling of flood characteristics using Vine copulas. Environ Earth Sci 79:459. https://doi.org/10.1007/s12665-020-09199-6
  • 38. Wang F, Wang Z, Yang H, Di D, Zhao Y, Liang Q, Hussain Z (2020) Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin China. J Hydrol 584:12475
  • 39. Wu H, Su X, Singh VP, Feng K, Niu J (2021) Agricultural Drought Prediction Based on Conditional Distributions of Vine Copulas. Water Resour Res 57(8):e2021WR029562
  • 40. Xu P, Wang D, Wang Y, Qiu J, Singh VP, Ju X, Zhang C (2021) Time-varying copula and average annual reliability-based non-stationary hazard assessment of extreme rainfall events. J Hydrol 603:126792
  • 41. Zhou Y, Chang FJ, Chen H, Li H (2021) Exploring copula-based bayesian model averaging with multiple ANNs for PM2.5 ensemble forecasts. J Cleaner Prod 263:121528. https://doi.org/10.1016/j.jclep ro.2020.121528
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879d3c8d-0eea-47fc-a2e0-2886f107e191
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.