Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article investigates the impact of time-dependent magnetohydrodynamics free convection flow of a nanofluid over a non-linear stretching sheet immersed in a porous medium. The combination of water as a base fluid and two different types of nanoparticles, namely aluminum oxide (Al2O3) and copper (Cu) is taken into account. The impacts of thermal radiation, viscous dissipation and heat source/sink are examined. The governing coupled non-linear partial differential equations are reduced to ordinary differential equations using suitable similarity transformations. The solutions of the principal equations are computed in closed form by applying the MATLAB bvp4c method. The velocity and temperature profiles, as well as the skin friction coefficient and Nusselt number, are discussed through graphs and tables for various flow parameters. The current simulations are suitable for the thermal flow processing of magnetic nanomaterials in the chemical engineering and metallurgy industries. From the results, it is noticed that the results of copper nanofluid have a better impact than those of aluminium nanofluid.
Czasopismo
Rocznik
Tom
Strony
165--173
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- Dept. of Mathematics, Krishna University, Machilipatnam, 521 004, A.P, India
autor
- bDept. of Mathematics, University College of Science and Technology, Adikavi Nannaya University, Rajamahendravaram, 533 296, A.P, India
Bibliografia
- [1] Sakiadis, B.C. (1961). Boundary layer behaviours on continuous solid surface. AIChE Journal, 7(2), 221‒225. doi: 10.1002/aic.690070211
- [2] Crane, L.J. (1970). Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 21, 645–647. doi:10.1007/bf01587695
- [3] Schlichting, H. (1955). Boundary-layer Theory. New York. McGraw-Hill.
- [4] Soundalgekar, V.M., & Ramanamurthy, T.V. (1980). Heat transfer past a continuous moving plate with variable temperature. Wärme- und Stoffübertragung, 14, 91‒93. doi: 10.1007/BF01806474
- [5] Grubka, L.G., & Bobba, K.M. (1985). Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME Journal of Heat and Mass Transfer, 107(1), 248‒250. doi:10.1115/1.3247387
- [6] Ishak, A., Nazar, R., & Pop, I. (2009). Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica, 44, 369‒375. doi:10.1007/s11012-008-9176-9
- [7] Kumaran, V., & Ramanaiah, G. (1996). A note on the flow over a stretching sheet. Acta Mechanica, 116, 229–233. doi: 10.1007/BF01171433
- [8] Vajravelu, K. (2001). Viscous flow over a nonlinearly stretching sheet. Applied Mathematics and Computation, 124, 281‒288. doi:10.1016/S0096-3003(00)00062-X
- [9] Cortell, R. (2007). Viscous flow and heat transfer over a nonlinear stretching sheet. Applied Mathematics and Computation, 184, 864‒873. doi: 10.1016/j.amc.2006.06.077
- [10] Raptis, A., & Perdikis, C. (2006). Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field. International Journal of Non-Linear Mechanics, 41(4), 527–529. doi: 10.1016/j.ijnonlinmec.2005.12.003
- [11] Kechil, S.A., & Hashim, I. (2008). Series solution of flow over non-linearly stretching sheet with chemical reaction and magnetic field. Physics Letters, Section A, 372(13), 2258–2263. doi:10.1016/j.physleta.2007.11.027
- [12] Sanni, K.M., Hussain, Q., & Asghar, S. (2020). Heat Transfer Analysis for Non-linear boundary driven flow over a curved stretching sheet with variable magnetic field. Frontiers in Physics, 8,113. doi: 10.3389/fphy.2020.00113
- [13] Alinejad., J, & Samarbakhsh., S. (2012). Viscous flow over nonlinearly stretching sheet with effects of viscous dissipation. Journal of Applied Mathematics, 2012, 1‒10. doi: 10.1155/2012/587834
- [14] Jabeen, K., Mushtaq, M., & Akram, R.M. (2020). Analysis of the MHD boundary layer flow over a nonlinear stretching sheet in a porous medium using semi-analytical approaches. Mathematical Problems in Engineering, 2020, 1‒9. doi: 10.1155/2020/3012854
- [15] Mahantesh M., Nandeppanavar., Vajravelu, K., Subhas Abel, M., & Chiu-On Ng. (2011). Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature. International Journal of Heat and Mass Transfer, 54, 4960‒4965.doi: 10.1016/j.ijheatmasstransfer.2011.07.009
- [16] Sanni, K.M., Asghar, S., Jalil, M., & Okechi., N.F. (2017). Flow of viscous fluid, along a nonlinearly stretching curved surface. Results in Physics, 7, 1‒4. doi: 10.1016/j.rinp.2016.11.058
- [17] Choi, S.U.S., & Eastman, J A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME International Mechanical Engineering Congress &Exposition, 12‒17 November, San Francisko, USA.
- [18] Buongiorno, J. (2006). Convective transport in nanofluids. ASME Journal of Heat and Mass Transfer, 128(3), 240‒250. doi:10.1115/1.2150834
- [19] Sudarsana Reddy, P., & Chamkha, A.J. (2016). Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alexandria Engineering Journal, 55(1), 331–341. doi: 10.1016/j.aej.2016.01.027
- [20] Ali, L, Liu, X., & Ali, B. (2020). Finite element analysis of variable viscosity impact on MHD flow and heat transfer of nanofluid using the Cattaneo–Christov model. Coatings, 10, 395. doi:10.3390/coatings10040395
- [21] Mjankwi, M.A., Masanja, V.G., Mureithi, E.W., & James, M.N. (2019). Unsteady MHD flow of nanofluid with variable properties over a stretching sheet in the presence of thermal radiation and chemical reaction. International Journal of Mathematics and Mathematical Sciences, 2019, 1–14. doi: 10.1155/2019/7392459
- [22] Anuar, N.S., Bachok., N, Arifin, N.M., & Rosali, H. (2020). MHD flow past a nonlinear stretching/shrinking sheet in carbon nanotubes: Stability analysis. Chinese Journal of Physics, 65, 436‒446, doi: 10.1016/j.cjph.2020.03.003
- [23] Mabood, F., Khan, W.A., & Ismail, A.I.M. (2015). MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials, 374, 569–576. doi: 10.1016/j.jmmm.2014.09.013
- [24] Jafar, A.B., Shafie, S., & Ullah, I. (2020). MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon, 6(6), doi: 10.1016/j.heliyon.2020.e04201
- [25] Triveni, B., Subba Rao, M.V., Gangadhar, K., & Chamkha, A.J. (2023). Heat transfer analysis of MHD Casson nanofluid flow over a nonlinear stretching sheet in the presence of non-uniform heat source. Numerical Heat Transfer, Part A: Applications. doi:10.1080/10407782.2023.2219831
- [26] Reddy, Y.D., Goud, B.S., Chamkha, A.J., & Kumar, M.A. (2022). Influence of radiation and viscous dissipation on MHD heat transfer Casson nanofluid flow along a nonlinear stretching surface with chemical reaction. Heat Transfer, 51(4), 3495‒3511. doi:10.1002/htj.22460
- [27] Rasool, G., Chamkha, A.J., Muhammad, T., Shafiq, A., & Khan, I. (2020). Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propulsion and Power Research, 9(2), 159‒168. doi: 10.1016/j.jppr.2020.04.003
- [28] Jagan, K., Sivasankaran, S., Bhuvaneswari, M., & Rajan, S. (2018). Effect of thermal radiation and slip on unsteady 3D MHD nanofluid flow over a non-linear stretching sheet in a porous medium with convective boundary condition. Journal of Physics: Conference Series, 1139. doi: 10.1088/1742-6596/1139/1/012027
- [29] Kumar, V.G., Kiran Kumar, R.V.M.S.S., & Varma, S.V.K. (2018). Unsteady magnetohydrodynamic stagnation point flow of a nanofluid over a slendering stretching sheet using Buongiorno’s odel. International Journal of Research in Industrial Engineering, 7(1), 84–105. doi: 10.22105/riej.2018. 102367.1028
- [30] Rajputa, S., Bhattacharyyaa, K., Pandeya, A.K., & Chamkha, A.J. (2022). Unsteady axi-symmetric flow of nanofluid on non-linearly expanding surface with variable fluid properties. JCIS Open, 8(100064). doi: 10.1016/j.jciso.2022.100064
- [31] Ramana Reddy, J.V., Sugunamma, V., & Sandeep, N. (2018). Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slandering stretching surface with slip effects. Alexandria Engineering Journal, 57, 2465‒2473. doi:10.1016/j.aej.2017.02.014
- [32] Kumar, V.G., Varma, S.V.K., & Kiran Kumar, R.V.M.S.S. (2019). Slip effects on magnetohydrodynamic boundary layer flow of a radiative nanofluid over an unsteady non-linear stretching sheet with non-uniform heat source/sink. Journal of Nanofluids, 8, 500–508. doi: 10.1166/jon.2019.1617
- [33] Kumar, V.G., Varma, S.V.K., & Kiran Kumar, R.V.M.S.S. (2019). Unsteady three-dimensional MHD nanofluid flow over a stretching sheet with variable wall thickness and slip effects. International Journal of Applied Mechanics and Engineering, 24, 709‒724. doi: 10.2478/ijame-2019-0044
- [34] Dinarvand, S., Yousefi, M., & Chamkha, A.J. (2022). Numerical simulation of unsteady flow toward a stretching/shrinking sheet in porous medium filled with a hybrid nanofluid. Journal of Applied and Computational Mechanics, 8(1), 11-20. doi: 10.22055/jacm.2019.29407.1595
- [35] Kumar, V.G., Ur Rehman, K., Kiran Kumar, R.V.M.S.S., & Shatanawi, W. (2022). Unsteady magnetohydrodynamic nanofluid flow over a permeable exponentially surface manifested with nonuniform heat source/sink effects. Waves in Random and Complex Media, 1‒19. doi: 10.1080/17455030.2022.2072531
- [36] Madhu, M., Kishan, N., & Chamkha, A.J. (2017). Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propulsion and Power Research, 6, 31‒40. doi: 10.1016/j.jppr.2017.01.002
- [37] Veera Krishna, M., & Chamkha, A.J. (2019). Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15. doi: 10.1016/j.rinp.2019.102652
- [38] Veera Krishna, M., Ahammad, N.A., & Chamkha, A.J. (2021). Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Studies in Thermal Engineering, 27(101229). doi: 10.1016/j.csite.2021.101229
- [39] Sreedevi, P., Sudarsana Reddy, P., & Chamkha, AJ. (2022). Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Applied Sciences, 2(7), 1222. doi: 10.1007/s42452-020-3011-x
- [40] Tiwari, R.J., & Das, M.K. (2007). Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50(9‒10), 2002–2018. doi: 10.1016/j.ijheatmasstransfer.2006.09.034
- [41] Veera Krishna, M., Ameer Ahamad, N., & Aljohani, A.F. (2021). Thermal radiation, chemical reaction, Hall and ion slip effects on MHD oscillatory rotating flow of micro-polar liquid. Alexandria Engineering Journal, 60, 3467‒3484. doi: 10.1016/j.aej.2021.02.013
- [42] Veera Krishna, M., & Chamkha, A.J. (2018). Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration. Physics of Fluids, 30(5). doi: 10.1063/1.5025542
- [43] Veera Krishna, M., & Chamkha, A.J. (2020). Hall and ion slip effects on MHD rotating flow of elastic-viscous fluid through porous medium. International Communications in Heat and Mass Transfer, 113. doi.: 10.1016/j.icheatmasstransfer.2020.104494
- [44] Darcy, H.P. (1856). Les fontaines publiques de la ville de Dijon. Paris. Dalmont.
- [45] Gupta, S., Kumar, D., & Singh, J. (2019). Magnetohydrodynamic three-dimensional boundary layer Flow and heat transfer of waterdriven copper and alumina nanoparticles induced by convective conditions. International Journal of Modern Physics B, 33(26),1950307. doi: 10.1142/S0217979219503077
- [46] Das, K., Sarkar, A., & Prabir Kumar, K. (2017). Cu-water nanofluid flow induced by a vertical stretching sheet in presence of a magnetic field with convective heat transfer. Propulsion and Power Research, 6(3), 206–213. doi: 10.1016/j.jppr.2017.07.001
- [47] Oztop, H.F., & Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5), 1326‒1336. doi: 10.1016/j.ijheatfluidflow.2008.04.009
- [48] Shampine, L.F., Kierzenka, J., & Reichelt, M.W. (2000). Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. http://users.math.uoc.gr/~marina/BVP_tutorial.pdf [accessed 20 Nov. 2023].
- [49] Rana, P., & Bhargava, R. (2012). Flow and heat transfer of a nanofluid over a non-linearly stretching sheet: a numerical study. Communications in Nonlinear Science and Numerical Simulation, 17(1), 212‒226. doi: 10.1016/j.cnsns.2011.05.009
- [50] Das, K. (2015). Nanofluid flow over a non-linear permeable stretching sheet with partial slip. Journal of the Egyptian Mathematical Society, 23, 451‒456. doi: 10.1016/j.joems.2014.06.014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879b139e-3c3e-4526-b61f-b6e6a8614569