Analiza termiczna żelbetowych kominów

Mgr inż. Bartłomiej Ratajewicz, słuchacz studiów doktoranckich, Politechnika Krakowska, prof. dr. hab. inż. Tadeusz Tatara, Politechnika Krakowska

1. Wprowadzenie

W eksploatacji jednoprzewodowych kominów żelbetowych bardzo istotnym zagadnieniem jest ocena wpływu warunków klimatycznych na zachowanie się konstrukcji. Oddziaływanie wiatru [22] oraz zmiennego pola temperatur ma znaczący wpływ na wartości naprężeń występujących w żelbetowym płaszczu tego typu obiektów.

Agresywne działanie spalin i zastosowane materiały powodują, że większość kominów tego rodzaju wybudowanych przed rokiem 1990 bardzo szybko traci warstwę termoizolacji położoną pomiędzy wewnętrzną wymurówką a płaszczem komina. Brak termoizolacji powoduje narażenie betonu trzonu komina na temperatury wyższe niż przewidywane na etapie projektu, powodując zwiększenie naprężeń termicznych w trzonie; jest to przyczyną rozwarcia rys i penetracji spalin oraz kondensatu w głąb płaszcza. Wysoka kwasowość kondensatu spalin powoduje zmianę odczynu betonu trzonu, a co za tym idzie osłabienie ochronnego działania wywieranego przez beton na stal zbrojeniową, powodując korozję zbrojenia trzonu. Kwasowy odczyn kondensatu spalin i samych spalin sprzyja także karbonatyzacji betonu, powodując zmiany w jego właściwościach materiałowych [1, 2, 3 i 4].

Stan techniczny komina ma również wpływ na charakterystyki dynamiczne konstrukcji. Wpływ degradacji płaszcza komina na jego częstotliwości drgań własnych analizowano w pracy [8]. Wykorzystano trzy warianty modelu uwzględniające stopień degradacji konstrukcji.

W prezentowanej pracy, przyjmując trzy warianty modelu komina, w zależności od jego stanu technicznego, analizowano wpływ obciążenia termicznego w zależności od pory roku na stan naprężeń w konstrukcji.

2. Dane projektowe analizowanego komina

Analizowany komin można uznać za reprezentatywny dla klasy żelbetowych kominów o wysokości do 200 m. Komin wzniesiony został w roku 1975. Jest to jednoprzewodowy komin żelbetowy z wykładziną murowaną o wysokości 180 m (rys. 1). Poniżej, za pracą [8], przytacza się podstawowe dane o konstrukcji komina. Średnica u wylotu wynosi 4,03 m, przy podstawie – 8,15 m. Komin jest zbieżny osiowo od poziomu +20 m. Grubość płaszcza przy podstawie wynosi 70 cm, w segmencie zawierającym wloty czopuchów – 60 cm, a następnie od poziomu +20 m zmniejsza się stopniowo od 50 cm do 15 cm na poziomie IV galerii (+179 m). Otwory czopuchowe mają wymiary 1,8x6,0 m i znajdują się na wysokości 7 m po przeciwnych stronach trzonu. Płaszcz komina wykonany został z betonu o wytrzymałości odpowiadającej klasie C25/30, zbrojonego stalą klasy A-0. Komin ma jeden przewód spalinowy z wymurówką wykonaną z cegły szamotowej "C1" grubości 25 cm od podstawy do poziomu +30 m, a powyżej tego poziomu z cegły ceramicznej dziurawki grubości 12 cm, odpowiadającej wytrzymałością obecnej klasie 15 [23]. Galerie obsługi znajdują się na poziomach +42,5, +87,5, +132,5 i +178,8 m. Termoizolację trzonu stanowi warstwa wełny żużlowej o grubości 6cm do poziomu +70 m, 4 cm pomiędzy +70 m a +90 m i 4 cm od poziomu +90 m do +150 m. Na ostatnich 30 m rolę termoizolacji pełni warstwa szkła piankowego szarego grubości 4 cm.

3. Zmiany stanu technicznego komina w świetle badań w latach 2000-2010

Podczas eksploatacji komina w latach 1975-2010 elementy jego konstrukcji ulegały postępującej korozji. Warstwa wełny mineralnej doszczętnie skorodowała i bardzo szybko przestała pełnić swoją funkcję. Trzon komina był wielokrotnie remontowany z powodu licznych pęknięć, rys i perforacji spowodowanych gromadzeniem się kondensatu na wspornikach pomiędzy wymurówką i płaszczem komina. Postępująca karbonatyzacja spowodowała znaczący wzrost wytrzymałości na ściskanie betonu, z którego wykonany został komin, jednocześnie powodując spadek jego odczynu poniżej 11.8pH, sprzyjając korozji zbrojenia [6]. W wewnętrznej warstwie żelbetowego płaszcza komina, narażonej na bezpośredni wpływ spalin, nastąpiły znaczne ubytki grubości betonu (średnio 1 cm grubości ścianki) [11,12,13].

4. Analiza numeryczna konstrukcji komina

4. 1. Model komina

Komin zamodelowano elementami powłokowymi w programie metody elementów skończonych MIDAS Gen [24]. Przyjęto model komina o utwierdzeniu pełnym, bez uwzględnienia warunków gruntowych (rys. 2, 3). W analizach wykorzystano trzy warianty modelu numerycznego komina, odpowiadające różnym jego stanom technicznym. Model "A" jest to model komina w stanie projektowym (idealnym); model "B" odpowiada stanowi technicznemu komina w roku 2000, a model "C" stanowi komina w roku 2010 [8].

Rys. 1. Widok komina

Rys. 2. Widok modelu komina

Modele "B" i "C" uwzględniają zmiany wytrzymałości betonu i grubości ścianek żelbetowego płaszcza w kolejnych segmentach na podstawie interpolacji wykorzystującej dane z analizy próbek pobranych z płaszcza na poziomach galerii obsługi. Dodatkowo uwzględniono wpływ korozji na zbrojenie, obniżając pole powierzchni zbrojenia o 25% dla modeli "B" i "C" [1, 5, 7].

4.2. Model obciążenia termicznego

W wariantach modelu uwzględnione zostało zmienne pole temperatur spowodowane warunkami klimatycznymi. Obciążenie to przyłożone zostało do analizowanych

Rys. 5. Wykres azymutu słońca

modeli jako gradienty temperatur pomiędzy wewnętrzną i zewnętrzną stroną płaszcza. Nominalna temperatura gazów spalinowych przy wlocie do komina wynosi 130°C, zaś maksymalna 150°C [11]. Dla ciągu naturalnego spadek temperatury wynosi 0,5°C na każdy metr wysokości komina.

Na temperaturę powierzchni płaszcza komina wpływ ma także promieniowanie słoneczne absorbowane przez beton. Powoduje ono nierównomierny rozkład temperatur na powierzchni płaszcza, wpływając na naprężenia panujące w betonie. Ilość energii dostarczanej w ten sposób różni się w zależności od pory roku i dnia, z powodu różnej wysokości słońca nad horyzontem (por. rys. 4) i zmian jego azymutu (por. rys. 5) [5].

Na podstawie danych z rysunków 4 i 5 można obliczyć ilość energii absorbowanej przez powierzchnię trzonu komina na podstawie wzoru (1) [5,9]:

$$I_{\beta} = I_{dir} \cdot \cos\left(\frac{\pi}{2} + h(t) - \beta\right) \cdot \cos\left(a_s(t) - a_w\right)$$
(1)

gdzie:

I_{dir} – promieniowanie bezpośrednie [W/m²],

h(t) – wysokość słońca nad horyzontem w funkcji czasu,

 β – nachylenie powierzchni elementu,

 a_{w} – azymut normalnej powierzchni elementu [rad],

a, – azymut słońca w funkcji czasu.

Promieniowanie bezpośrednie określone jest jako [5]:

$$I_{dir} = I_0 \cdot q_G$$

(2)

gdzie:

 I_o – stała słoneczna równa 1370 W/m²,

 $q_{\rm G}$ – współczynnik zależny od wysokości słońca, pory roku i zanieczyszczenia powietrza.

Temperaturę na powierzchni zewnętrznej płaszcza (Tz) oblicza się wykorzystując zależność (3) [5,9]:

$$T_z = T_0 + I_\beta \cdot \frac{E}{\alpha_e} \tag{3}$$

gdzie:

I₈ – natężenie promieniowania słonecznego na daną powierzchnię [W/m²],

E – współczynnik absorpcji promieniowania słonecznego,

Π

3

				Mode	el "A"		Model "B"				Model "C"			
		Lato		Zima		Lato		Zima		Lato		Zima		
Segment		słońce	cień	słońce	cień	słońce	cień	słońce	cień	słońce	cień	słońce	cień	
0	-	20m	81,18	66,87	38,26	23,95	85,88	72,59	46,01	32,72	85,92	72,6	46,02	32,74
20	-	30m	78,91	64,51	35,72	21,32	84,9	71,89	45,87	32,86	84,95	71,91	45,89	32,89
30	-	40m	77,29	62,86	34,02	19,59	83,43	70,51	44,66	31,74	83,45	70,53	44,67	31,78
40	-	50m	75,69	61,22	32,32	17,86	81,93	69,09	43,42	30,58	81,97	69,15	43,5	30,68
50	-	60m	74,1	59,59	30,63	16,13	80,39	67,64	42,15	29,4	80,5	67,78	42,35	29,63
60	-	70m	72,63	58,11	29,16	14,65	78,81	66,15	40,83	28,17	78,98	66,37	41,16	28,55
70	-	80m	72,15	57,95	29,61	15,42	76,78	64,08	38,68	25,98	77,04	64,42	39,19	26,57
80	-	90m	70,64	56,43	28,12	13,93	75,15	62,54	37,32	24,71	75,45	62,95	37,94	25,44
90	-	100m	70,08	56,25	28,67	14,86	73,7	61,27	36,41	23,98	73,93	61,58	36,89	24,55
100	-	110m	68,39	54,53	25,9	13,06	71,98	59,65	34,98	22,65	72,13	59,85	35,31	23,05
110	-	120m	66,71	52,82	25,14	11,26	70,19	57,94	33,45	21,21	70,27	58,07	33,66	21,46
120	-	130m	65,05	51,11	23,37	9,46	68,35	56,19	31,87	19,72	68,38	56,24	31,97	19,83
130	-	140m	63,69	49,41	21,6	7,65	66,47	54,41	30,27	18,21	66,49	54,43	30,31	18,26
140	-	150m	61,69	47,62	19,64	5,6	64,26	52,05	27,63	15,42	64,28	52,08	27,69	15,47
150	-	160m	59,54	44,94	15,94	1,39	59,55	45,01	15,62	1,52	59,61	45,03	15,68	1,56
160	-	170m	58,05	43,39	14,28	-0,3	58,09	43,44	13,89	-0,11	58,15	43,47	13,92	0,07
170	-	180m	56,6	41,86	12,6	-2,07	56,61	41,87	12,17	-2,03	56,66	42,05	12,21	-1,95

Tabela 1. Średnie wartości temperatu	y betonu w segmentach trzonu komina [°C	Cj
--------------------------------------	---	----

$$\alpha_e$$
 – współczynnik przejmowania ciepła na powierzchni, T_o – temperatura powietrza dla danej pory roku,

Obliczoną temperaturę na powierzchni zewnętrznej płaszcza po stronie nasłonecznionej wg zależności (3) wykorzystano do wyznaczenia rozkładu temperatur w warstwach trzonu komina. Współczynnik przenikania ciepła przez przegrodę cylindryczną wyliczono według wzoru (4) [5,9]:

$$\frac{1}{k} = \frac{1}{\alpha_n} + \sum_{i=1}^n (\frac{g_i}{\lambda_i} \cdot \chi_i \cdot \frac{R}{r_i}) + \frac{1}{\alpha_0}$$

w którym:

 α_n – współczynnik napływu ciepła dla wewnętrznej strony wykładziny [W/m²K];

 α_{o} – współczynnik odpływu ciepła dla zewnętrznej powierzchni trzonu [W/m²K];

g_i – grubość i-tej warstwy przegrody cieplnej;

 λ_i – współczynnik przewodności cieplnej i-tej warstwy przegrody wg załącznika 1 normy [16];

 χ_i – współczynnik poprawkowy uwzględniający zakrzywienie ściany, w funkcji (R/r_i);

r_i – wewnętrzny promień krzywizny i-tej warstwy przegrody;

R – zewnętrzny promień trzonu komina.

Wartości temperatur na kolejnych warstwach przegród obliczone zostały, wg zależności (5):

$$\Delta t_i = k \cdot \frac{g_i}{\lambda_i} \cdot \chi_i \cdot \frac{R}{r_i} \cdot dT$$
(5)

w której:

(4)

$$dT = T_w - T_z$$

(6)

 T_w – temperatura wewnętrzna,

 T_z – temperatura zewnętrznej.

Na podstawie wzoru (6) obliczono różnicę temperatur między wewnętrzną a zewnętrzną częścią trzonu komina dla kolejnych metrów wysokości komina. Przykładowo na rysunku 6 pokazano zmiany różnic temperatur w obliczeniowych modelach "A" i "C". Ilustrację ograniczono do modeli "A" i "C" z uwagi na skrajne ich stany techniczne.

Wykresy wyraźnie ilustrują różnicę pomiędzy gradientem temperatur występującym w zimie i w lecie w modelach "A" i "C". Dla szczytowych segmentów komina różnice są nieznaczne ze względu na warstwę szkła piankowego, która nadal spełnia swoje zadanie w przeciwieństwie do warstw termoizolacyjnych z wełny żużlowej na niż-

					Zbrojenie pionowe		Zbrojenie obwodowe						
S	Segment		wg projektu				owierzchn	i [cm²]	wg pro	Pole powierzchni [cm²]			
			Średnica [mm]	na m.b.	Rozstaw [cm]	" A "	"B"	"C"	Średnica [mm]	Rozstaw [cm]	"A"	"B"	"C"
0	-	20m	20	10,0	10,0	31,4	28,3	25,1	14	10,0	15,4	13,9	12,3
20	-	30m	16	8,0	12,5	16,1	14,5	12,9	12	10,0	11,3	10,2	9,0
30	-	40m	16	8,0	12,5	16,1	14,5	12,9	12	10,0	11,3	10,2	9,0
40	-	50m	16	8,0	12,5	16,1	14,5	12,9	12	10,0	11,3	10,2	9,0
50	-	60m	16	8,0	12,5	16,1	14,5	12,9	12	10,0	11,3	10,2	9,0
60	-	70m	16	9,0	11,1	18,1	16,3	13,6	12	12,5	14,1	12,7	10,6
70	-	80m	16	9,0	11,1	18,1	16,3	13,6	8	10,0	5,0	4,5	3,8
80	-	90m	14	10,0	10,0	15,4	12,3	11,5	8	12,5	6,3	5,0	4,7
90	-	100m	14	9,0	11,1	13,9	11,1	10,4	8	20,0	10,1	8,0	7,5
100	-	110m	12	11,0	9,1	12,4	10,0	9,3	8	20,0	10,1	8,0	7,5
110	-	120m	12	11,0	9,1	12,4	10,0	9,3	8	20,0	10,1	8,0	7,5
120	-	130m	12	8,0	12,5	9,0	7,2	6,8	8	20,0	10,1	8,0	7,5
130	-	140m	8	11,0	9,1	5,5	4,4	4,1	8	20,0	10,1	8,0	7,5
140	-	150m	8	9,0	11,1	4,5	3,6	3,4	8	20,0	10,1	8,0	7,5
150	-	160m	8	9,0	11,1	4,5	3,6	3,4	8	20,0	10,1	8,0	7,5
160	-	170m	8	9,0	11,1	4,5	3,6	3,4	8	20,0	10,1	8,0	7,5
170	-	180m	8	9,0	11,1	4,5	3,6	3,4	8	20,0	10,1	8,0	7,5

Tabela 2. Zbrojenie w poszczególnych segmentach komina

Tabela 3. Naprężenia w stali i betonie trzonu komina

		ont	Napręż	enia w stal	i [MPa]	Naprężenia w betonie [MPa]			
31	eym		"A"	"В"	"C"	"A"	"B"	"C"	
0	-	20m	11,334	12,241	13,034	5,775	6,237	6,641	
20	-	30m	12,982	13,891	14,670	5,361	5,736	6,058	
30	-	40m	13,115	13,771	14,558	5,731	6,018	6,361	
40	-	50m	14,938	15,984	16,731	5,233	5,599	5,861	
50	-	60m	14,477	15,288	16,649	5,152	5,441	5,925	
60	-	70m	14,157	15,120	15,997	5,323	5,685	6,015	
70	-	80m	11,336	12,243	12,583	4,688	5,063	5,204	
80	-	90m	9,073	9,708	10,162	4,274	4,573	4,787	
90	-	100m	7,371	7,740	8,477	4,277	4,491	4,919	
100	-	110m	4,633	4,957	5,235	4,023	4,305	4,546	
110	-	120m	1,832	1,935	2,034	3,588	3,789	3,983	
120	-	130m	0,094	0,100	0,105	3,142	3,356	3,519	
130	-	140m	0,052	0,056	0,060	2,569	2,775	2,954	
140	-	150m	0,039	0,042	0,044	1,938	2,074	2,190	
150	-	160m	0,0321	0,0331	0,034	1,5230	1,5687	1,691	
160	-	170m	0,0183	0,0187	0,019	1,4410	1,4698	1,513	
170	-	180m	0,0154	0,0160	0,016	0,7950	0,8268	0,819	

		mancoot	// / OLI/U/ 0/U	.) e 11 p.a.e_					
6	am	ont	Rozwarcie rys [mm]						
3	eyiii	ent	" A "	"В"	"C"				
0 -		20m	0,188	0,201	0,203				
20	-	30m	0,154	0,163	0,168				
30	-	40m	0,194	0,208	0,213				
40	-	50m	0,162	0,174	0,182				
50	-	60m	0,156	0,164	0,2				
60	-	70m	0,137	0,145	0,163				
70	-	80m	0,161	0,172	0,176				
80	-	90m	0,217	0,233	0,239				
90	-	100m	0,214	0,225	0,253				
100	-	110m	0,239	0,253	0,289				
110	-	120m	0,363	0,388	0,392				
120	-	130m	0,342	0,368	0,374				
130	-	140m	0,311	0,327	0,355				
140	-	150m	0,285	0,302	0,319				
150	-	160m	0,262	0,283	0,277				
160	-	170m	0,251	0,266	0,261				
170	-	180m	0,257	0,267	0,268				

1,800 1,600 Różnica naprężeń [MPa] Δσ betonu B wzgl. A 1,400 Δσ stali B wzgl. A 1,200 1,000 Δσ betonu C wzgl. A 0,800 Δσ stali C wzgl. A 0,600 0,400 0.200 0,000 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 Wysokość [m]

Rys. 7. Różnice naprężeń pionowych w betonie i stali trzonu komina (model B względem A i C względem A)

szych segmentach. Średnie temperatury betonu w poszczególnych segmentach trzonu przedstawia tabela 1.

4.3. Wyniki analizy numerycznej w zakresie statyczno-wytrzymałościowym

Analiza statyczna modeli "A", "B" i "C" została wykonana z uwzględnieniem stanu technicznego (ubytki betonu [8]) oraz wpływu naprężeń termicznych. Do analizy wybrano "model dla okresu letniego" ze względu na występowanie wyższych temperatur w płaszczu żelbetowym. Zbrojenie przyjęto według projektu, obniżając dodatkowo pole zbrojenia o 20% i 25% dla modeli "B" i "C" (tab. 2).

W tabeli 3 zestawiono obliczone naprężenia pionowe w stali i betonie trzonu komina. Obliczenia wykazały około 8% wzrost naprężeń w zbrojeniu i betonie w modelu C względem modelu A, oraz 4% w modelu B względem modelu A – por. rysunek 7.

Z analizy wyników obliczeń naprężeń termicznych widoczny jest ich miarowy

wzrost wraz ze wzrostem gradientu temperatur w betonowym płaszczu komina.

Analizy numeryczne wykazały też zwiększenie się szerokości rozwarcia rys w płaszczu komina (tab. 4.), spowodowane znacznym wzrostem temperatury betonu w rozpatrywanych modelach "A", "B" i "C".

Przykładowo zależność wzrostu rozwarcia rysy w modelu "C" od zmiany temperatury betonu trzonu wraz z linią trendu pokazano na rysunku 8.

5. Podsumowanie

Wyniki analizy numerycznej przedmiotowego komina ukazują zmniejszenie różnicy temperatur między warstwami płaszcza oraz wzrost naprężeń w zbrojeniu i betonie dla modeli "B" i "C". W porównaniu z modelem "A", gradienty temperatur modeli "B" i "C" zmniejszyły się o ok. 4%, powodując nagrzanie zewnętrznej warstwy płaszcza i zmiany w naprężeniach panujących w trzonie komina. Bezpośredni wpływ ma na to brak izolacji termicznej, w modelach "B" i "C", doszczętnie skorodowanej przez spaliny.

Wzrost temperatury żelbetowego płaszcza podczas eksploatacji powoduje zwiększenie rozwarcia rys i postępujące rozszczelnienie komina [5]. Dodatkowo wzrost temperatury może spowodować odkształcanie się stali zbrojeniowej, a w efekcie utratę przyczepności zbrojenia i zniszczenie otuliny.

Naprężenia w betonie i stali zbrojeniowej w modelach "B" i "C" nie przekraczają dopuszczalnych normowych wartości [17], ale postępująca korozja i utrata grubości ścian trzonu mogą spowodować ich przekroczenie.

Celem precyzyjnego określenia obecnego stanu komina konieczna jest analiza termowizyjna i ponowne pobranie próbek płaszcza, co pozwoli ocenić rzeczywisty rozkład temperatur w betonie podczas pracy komina oraz określić postęp korozji.

BIBLIOGRAFIA

 Fiertak M., Kańka S., Postęp destrukcji betonu trzonu komina energetycznego. Materiały XII Konferencji Naukowo-Technicznej KONTRA, Zakopane 2000

[2] Fiertak M., Kańka S., Ocena stopnia destrukcji materiałów w żelbetowych kominach energetycznych. Inżynieria i Budownictwo, nr 7-8/1995

Rys. 8. Zależność między zmianą temperatury a wzrostem szerokości rozwarcia rys

[3] Fiertak M., Kańka S., Ocena jakości i stopnia destrukcji betonu na podstawie badań chemicznych i wytrzymałościowych. Cement-Wapno-Gips, nr 3/1995

[4] Kańka S., Materiałowe i eksploatacyjne uwarunkowania trwałości żelbetowych kominów przemysłowych. Praca doktorska. Politechnika Krakowska, Kraków 2012

[5] Lechman M., Ocena wpływu nierównomiernego nasłonecznienia na konstrukcje kominów żelbetowych i murowanych. Prace Instytutu Budownictwa Politechniki Wrocławskiej, nr 78, Wrocław 2000

[6] Oruba R., Analiza wpływu uszkodzeń na sztywność i właściwości dynamiczne żelbetowych kominów przemysłowych. Praca doktorska, Politechnika Krakowska, Kraków 1994

[7] Oruba R., Oddziaływanie środowiska przemysłowego i eksploatacji górniczej na bezpieczeństwo żelbetowych kominów przemysłowych. Rozprawy Monografie 211. Wydawnictwa AGH, Kraków 2010

[8] Tatara T., Ratajewicz B., Wpływ stanu technicznego komina żelbetowego na jego właściwości dynamiczne, "Inżynieria i Budownictwo", nr 1/2015

[9] Zych M., Naprężenia termiczne w dojrzewającym betonie ściany zbiornika żelbetowego, Czasopismo Techniczne z.12 – Środowisko z. 1-Ś/2007, ISSN 0011-4561, str. 191-208

[10] Praca zbiorowa, Budownictwo betonowe, tom XIII – Zbiorniki, zasobniki, silosy, kominy i maszty. Arkady, Warszawa 1966

WYKORZYSTANE MATERIAŁY

[11] Ocena stanu technicznego żelbetowego komina H = 180 m
 w Elektrociepłowni nr 2 w Zakładach Koksowniczych "Zdzieszowice".
 Politechnika Krakowska, Kraków 2000

[12] Ocena stanu technicznego żelbetowego komina H = 180 m
 w Elektrociepłowni nr 2 w Zakładach Koksowniczych "Zdzieszowice".
 Politechnika Krakowska, Kraków 2005

[13] Ocena stanu technicznego żelbetowego komina H = 180 m w Elektrociepłowni nr 2 w Zakładach Koksowniczych "Zdzieszowice". Politechnika Krakowska, Kraków 2010

[14] ISO 4354:2009 Wind actions on structures

[15] PN-EN 1991-1-1:2004 Eurokod 1 – Oddziaływania na konstrukcje. Cz. 1-1: Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach

[16] PN-B-03004:1988 Kominy murowane i żelbetowe – Obliczenia statyczne i projektowanie

[17] PN-B-03254:2002 Konstrukcje betonowe, żelbetowe i sprężone – Obliczenia statyczne i projektowanie

[18] PN-EN 1992-1-1:2008 Eurokod 2 – Projektowanie konstrukcji z betonu – Część 1-1: Reguły ogólne i reguły dla budynków

[19] PN-EN 13084-1:2007 Kominy przemysłowe wolno stojące. Część 1: Wymagania ogólne

[20] PN-EN 13084-2:2007 Kominy wolno stojące. Część 2: Kominy betonowe
 [21] PN-EN 13084-4:2006 Kominy wolno stojące. Część 4: Wykładziny murowane. Projektowanie i wykonanie

[22] PN-77B-02011 Obciążenie wiatrem

[23] PN-EN 771-1 Wymagania dotyczące elementów murowych –

Część 1: Elementy murowe ceramiczne

[24] http://manual.midasuser.com/EN_TW/Gen/761/whnjs.htm, sierpień 2010