Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Heart failure is one of the severe diseases which menace the human health and affect millions of people. Half of all patients diagnosed with heart failure die within four years. For the purpose of avoiding life-threatening situations and minimizing the costs, it is important to predict mortality rates of heart failure patients. As part of a HEIF-5 project, a data mining study was conducted aiming specifically at extracting new knowledge from a group of patients suffering from heart failure and using it for prediction of mortality rates. The methodology of knowledge discovery in databases is analyzed within the framework of home telemonitoring. Several data mining methods such as a Bayesian network method, a decision tree method, a neural network method and a nearest neighbour method are employed. The accuracy for the data mining methods from the point of view of avoiding life-threatening situations and minimizing the costs is discussed. It seems that the decision tree method achieves the best accuracy results and is also interpretable for the clinicians.
Wydawca
Rocznik
Tom
Strony
7--16
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Department of Computer Science, University of Hull, Hull, UK
- Department of Computer Science, University of Zilina Zilina, Slovakia
autor
- Department of Computer Science, University of Hull, Hull, UK
autor
- Department of Computer Science, University of Hull, Hull, UK
autor
- Department of Cardiology, University of Hull, Hull, UK
Bibliografia
- [1] West D., How mobile devices are transforming healthcare, Issues in Technology Innovation (2012).
- [2] Lopez-Sendon J., The heart failure epidemic, Medicographia 33(4) (2011): 363.
- [3] Vinson J. M., Rich M. W., Sperry J. C., McNamara T. C., Early readmission of elderly patients with congestive heart failure, Journal of the American Geriatrics Society 38(12) (1990): 1290.
- [4] Lee D. S., Austin P. C., Rouleau J. L., Liu P. P., Naimark D., Tu J. V., Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model, JAMA 290(19) (2003): 2581.
- [5] Lee D. S., Stitt A., Austin P. C., Stukel T. A., Schull M. J., Chong A., Newton G. E., Lee J. S., Tu J. V., Prediction of heart failure mortality in emergent care: a cohort study, Annals of Internal Medicine 156(11) (2012): 767.
- [6] Ketchum E. S., Jacobson A. F., Caldwell J. H., Senior R., Cerqueira M. D., Thomas G. S., Agostini D., Narula J., Levy W. c., Selective improvement in Seattle Heart Failure Model risk stratification using iodine-123 metaiodobenzylguanidine imaging, Journal of Nuclear Cardiology 19(5) (2012): 1007.
- [7] Fayyad U., Piatetsky-Shapiro G., Smyth P., From data mining to knowledge discovery in databases, AI Magazine 17(3) (1996): 37.
- [8] Chaudhry S. I., Mattera J. A., Curtis J. P., Spertus J. A., Herrin J., Lin Z., Phillips C. O., Hodshon B. V., Cooper L. S., Krumholz H. M., Telemonitoring in patients with heart failure, The New England Journal of Medicine 363(24) (2010): 2301.
- [9] Clinical Effectiveness and Evaluation Unit of the Royal College of Physicians, Managing chronic heart failure, learning from best practice, The Lavenham Press Ltd, UK (2005).
- [10] Stromberg A., Martensson J., Gender differences in patients with heart failure, European Journal of Cardiovascular Nursing 2(1) (2003).
- [11] Walker M., Shaper A. G., Phillips A. N., Cook D. G., Short stature, lung function and risk of a heart attack, International Journal of Epidemiology 18(3) (1989): 602.
- [12] Akinkuolie A. O., Aleardi M., Ashaye A. O., Gaziano J. M., Djousse L., Height and risk of heart failure in the Physicians’ Health Study, American Journal of Cardiology 109 (7) (2011): 994.
- [13] Bouckaert R. R., Bayesian Network Classifiers in Weka for Version 3-5-7, University of Waikato, New Zealand (2008).
- [14] Kotsiantis S. B., Supervised machine learning: a review of classification techniques, Informatica 31 (2007): 249.
- [15] Cakır A., Demirel B., A software tool for determination of breast cancer treatment methods using data mining approach, Journal of Medical Systems 35(6) (2011): 1503.
- [16] Martin B., Instance-based learning: Nearest neighbour with generalization, University of Waikato, New Zealand (1995).
- [17] Witten I. H., Frank E., Hall M. A., Practical machine learning tools and techniques (3rd edition), Morgan Kaufman Publishers, USA (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879403c3-96e2-4405-b535-9669bc5a9e02