PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of strain rate sensitivity of Gum Metal under tension using digital image correlation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical behavior of a multifunctional titanium alloy Gum Metal was investigated by conducting tensile tests at various strain rates and applying digital image correlation (DIC) technique. Stress–strain curves confirmed low Young’s modulus and high strength of the alloy. The determined values of yield strength had a tendency to increase, whereas the elongation to the specimen rupture tended to decrease with increasing strain rate. True stress versus strain curves were analyzed using selected lengths of virtual extensometer (VE) placed in the strain localization area. When the initial length of the VE was the same as the gauge length, work hardening was observed macroscopically at lower strain rates, and a softening was seen at higher strain rates. However, the softening effect was not observed at the shorter VE lengths. Evolution of the Hencky strain and rate of deformation tensor component fields were analyzed for various strain rates at selected stages of Gum Metal load-ing. The DIC analysis demonstrated that for lower strain rates the deformation is macroscopically uniform up to the higher average Hencky strains, whereas for higher strain rates the strain localization occurs at the lower average Hencky strains of the deformation process and takes place in the smaller area. It was also found that for all strain rates applied, the maximal values of Hencky strain immediately before rupture of Gum Metal samples were similar for each of the applied strain rates, and the maximal local values of deformation rate were two orders higher when compared to applied average strain rate values.
Rocznik
Strony
339--352
Opis fizyczny
Bibliogr. 35 poz., fot., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
  • Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi 480-1192, Japan
  • Department of Mechanical Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
Bibliografia
  • [1] Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Multifunctional alloys obtained via a dislocation free plastic deformation mechanism. Sci-ence. 2003;300:464–7.
  • [2] Kuramoto S, Furuta T, Hwang J, Nishino K, Saito T. Elastic properties of Gum Metal. Mater Sci Eng A. 2006;442:454–7.
  • [3] Ikehata H, Nagasako N, Kuramoto S, Saito T. Designing new structural materials using density functional theory: the example of Gum Metal TM. MRS Bull. 2006;31:688–92.
  • [4] Kuramoto S, Furuta T, Hwang JH, Nishino K, Saito T. Plastic deformation in a multifunctional Ti–Nb–Ta–Zr–O alloy. Metall Mater Trans A. 2006;37:657–62.
  • [5] Furuta T, Kuramoto S, Morris JW, Nagasako N, Withey E, Chrzan DC. The mechanism of strength and deformation in Gum Metal. Scr Mater. 2013;68:767–72.
  • [6] Wei LS, Kim HY, Koyano T, Miyazaki S. Effects of oxygen concentration and temperature on deformation behavior of Ti–Nb–Zr–Ta–O alloys. Scr Mater. 2016;123:55–8.
  • [7] Yano T, Murakami Y, Shindo D, Kuramoto S. Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy. Acta Mater. 2009;57:628–33.
  • [8] Coakley J, Vorontsov VA, Littrell KC, Heenan RK, Ohnuma M, Jones NG, Dye D. Nanoprecipitation in a beta-titanium alloy. J Alloys Compd. 2015;623:146–56.
  • [9] Yano T, Murakami Y, Shindo D, Hayasaka Y, Kuramoto S. Trans-mission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal. Scr Mater. 2010;63:536–9.
  • [10] Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H. ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater. 2013;61:139–50.
  • [11] Kim HY, Wei L, Kobayashi S, Tahara M, Miyazaki S. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy. Acta Mater. 2013;61:4874–86.
  • [12] Vorontsov VA, Jones NG, Rahman KM, Dye D. Superelastic load cycling of Gum Metal. Acta Mater. 2015;88:323–33.
  • [13] Plancher E, Tasan CC, Sandloebes S, Raabe D. On dislocation involvement in Ti–Nb Gum Metal plasticity. Scr Mater. 2013;68:805–8.
  • [14] Lai MJ, Tasan CC, Raabe D. Deformation mechanism of ω-enriched Ti–Nb-based Gum Metal: dislocation channeling and deformation induced ω–β transformation. Acta Mater. 2015;100:290–300.
  • [15] Lai MJ, Tasan CC, Raabe D. On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 2016;11:173–86.
  • [16] Castany P, Yang Y, Bertrand E, Gloriant T. Reversion of a parent {130} 310α martensitic twinning system at the origin of {332} 113β twins observed in metastable β titanium alloys. Phys Rev Lett. 2016;117:245501-1–6.
  • [17] Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H. Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater. 2011;59:6975–88.
  • [18] Wei LS, Kim HY, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater. 2015;100:313–22.
  • [19] Nagasako N, Asahi R, Isheim D, Seidman DN, Kuramoto S, Furuta T. Microscopic study of gum-metal alloys: a role of trace oxygen for dislocation-free deformation. Acta Mater. 2016;105:347–54.
  • [20] Guo W, Quadir MZ, Moricca S, Eddows T, Ferry M. Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route. Mater Sci Eng A. 2013;575:206–16.
  • [21] Pieczyska EA, Maj M, Furuta T, Kuramoto S. Gum Metal-unique properties and results of initial investigation of a new titanium alloy-extended paper. In: Kleiber M, editor. Advances in mechanics: theoretical, computational and interdisciplinary issues. Balkema/London: CRC Press/Taylor & Francis Group; 2016. p. 469–72.
  • [22] Golasiński KM, Pieczyska EA, Staszczak M, Maj M, Furuta T, Kuramoto S. Infrared thermography applied for experimental investigation of thermomechanical couplings in Gum Metal. Quant Infrared Thermogr J. 2017;14:226–33.
  • [23] Pieczyska EA, Maj M, Golasiński K, Staszczak M, Furuta T, Kuramoto S. Thermomechanical studies of yielding and strain localization phenomena of Gum Metal under tension. Materials. 2018;11(567):1–13.
  • [24] Efstathiou C, Sehitoglu H. Local transformation strain measurements in precipitated NiTi single crystals. Scr Mater. 2008;59:1263–6.
  • [25] Daly S, Ravichandran G, Bhattacharya K. Stress-induced marten sitic phase transformation in thin sheets of Nitinol. Acta Mater. 2007;55:3593–600.
  • [26] Bewerse C, Gall KR, McFarland GJ, Zhu P, Brinson LC. Local and global strains and strain ratios in shape memory alloys using digital image correlation. Mater Sci Eng A. 2013;568:134–42.
  • [27] Eskandari M, Zarei-Hanzaki A, Yadegari M, Soltani N, Asghari A. In situ identification of elastic–plastic strain distribution in a micro-alloyed transformation induced plasticity steel using digital image correlation. Opt Laser Eng. 2014;54:79–87.
  • [28] Sène NA, Balland P, Bouabdallah K. Experimental study of Porte vin–Le Châtelier bands on tensile and plane strain tensile tests. Arch Civ Mech Eng. 2018;18(1):94–102.
  • [29] Zhang J-L, Tasan CC, Lai ML, Zhang J, Raabe D. Damage resistance in Gum Metal through cold work-induced microstructural het-erogeneity. J Mater Sci. 2015;50:5694–708.
  • [30] Liu S, Pan ZL, Zhao YH, Topping T, Valiev RZ, Liao XZ, Lavernia EJ, Zhu YT, Wei Q. Effect of strain rate on the mechanical properties of a Gum Metal with various microstructures. Acta Mater. 2017;132:193–208.
  • [31] Nowak M, Maj M. Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: numerical procedures and results. Arch Civ Mech Eng. 2018;18:630–44.
  • [32] Kowalczyk-Gajewska K, Pieczyska EA, Golasiński K, Maj M, Kuramoto S, Furuta T. A finite strain elastic–viscoplastic model of Gum Metal. Int J Plast. 2019;119:85–101.
  • [33] Musiał S, Nowak M, Maj M. Stress field determination based on digital image correlation results. Arch Civ Mech Eng. 2019;19(4):1183–93.
  • [34] Golasiński K, Pieczyska E, Maj M, Mackiewicz S, Staszczak M, Kowalewski Z, Urbański L, Zubko M, Takesue N. Anisotropy of Gum Metal analysed by ultrasonic measurement and digital image correlation. Mater Sci Technol. 2020;36(9):996–1002.
  • [35] Wei Q, Wang L, Fu Y, Qin J, Lu W, Zhang D. Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater Des. 2011;32:2934–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87902625-f04a-4f80-af26-49578975528a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.