PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept of an adaptive-tuned particles impact damper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most popular devices for attenuation of mechanical vibrations are dampers or shock absorbers. Two main energy dissipation strategies can be generally distinguished: passive and active (semi-active). Passive vibration isolation methods are the most commonly used, mainly because of their simplicity and low maintenance costs. Among passive vibration attenuation techniques, also Particle Impact Dampers (PID) are involved. Classical PID solutions have some certain limitations. This paper aims at presenting the new concept of an adaptive tuned PID damper that can pretend to be placed among semi-active energy dissipation methods.
Rocznik
Strony
811--816
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland
Bibliografia
  • 1. Bartkowski P., Zalewski R., Chodkiewicz P., 2019, Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm, Archives Of Civil And Mechanical Engineering, 19, 322-333.
  • 2. Chen J., Georgakis C. T., 2013, Tuned rolling-ball dampers for vibration control in wind turbines, Journal of Sound and Vibration, 332, 5271-5282.
  • 3. Du Y., 2017, A spring-supported fine particle impact damper to reduce harmonic vibration of cantilever beam, Advances in Mechanical Engineering, 9, 5, 1687-8140.
  • 4. Du Y., Wang S., 2010, Modeling the fine particle impact damper, International Journal of Mechanical Sciences, 52, 1015-1022.
  • 5. Fitzgerald B., Sarkar S., Staino A., 2018, Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs), Journal of Sound and Vibration, 419, 103-122.
  • 6. Hussan M., Rahman M.S., Sharmin F., Kim D., Do J., 2018, Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation, Ocean Engineering, 160, 449-460.
  • 7. Lei X., Wu C., Chen P., 2018, Optimizing parameter of particle damping based on Leidenfrost effect of particle flows, Mechanical Systems and Signal Processing, 104, 60-71.
  • 8. Paget A.L., 1937, Vibration in steam turbine buckets and damping by impacts, Engineering, 143, 305-307.
  • 9. Snoun C., Trigui M., 2018, Design parameters optimization of a particles impact damper, International Journal on Interactive Design and Manufacturing (IJIDeM), 12, 1283-1297.
  • 10. Zalewski R., Żurawski M., Chodkiewicz P., 2019, Passive-adaptive vibration damper with loose grain material (in Polish), Patent P.430075.
  • 11. Zhang K., Chen T., Wang X., Fang J., 2016, Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper, Journal of Sound and Vibration, 364, 30-43.
  • 12. Zhang Z., Staino A., Basu B., Nielsen S.R., 2016, Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing, Engineering Structures, 126, 417-431.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-878eff81-ba13-430d-a469-811535d7162d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.