PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorbent Characterization from Cocoa Shell Pyrolysis (Theobroma cacao L) and its Application in Mercury Ion Reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we describe the characterization and application of adsorbent derived from the pyrolysis of cocoa shells, which is a natural source of adsorbent materials. The adsorbent that was used in this experiment is an environmentally friendly adsorbent that was prepared by the pyrolysis of cocoa shells. For 1.5 hours, the pyrolysis process was carried out at temperatures ranging from 300 to 380 °C. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and analysis with an X-ray diffraction (XRD) analyzer. Water-ash content and iodine absorption capacity were also determined in accordance with SNI 06-3730-1995. At a contact time of 90 minutes, the adsorption capacity of mercury ions was found to be 0.106 mg/gram. In this study, the adsorption of mercury ions with the adsorbent followed pseudo-second-order models with an R2 value of 0.9929.
Słowa kluczowe
Rocznik
Strony
366--375
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Graduate School of Environmental Management, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Environmental Laboratory, Department of Environment, Pidie Regency 24111, Indonesia
autor
  • Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Agrotechnology, Universitas Iskandar Muda, Banda Aceh, 23234 Indonesia
  • Department of Agrotechnology, Universitas Iskandar Muda, Banda Aceh, 23234 Indonesia
autor
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Biochar and Forest Conservation Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Abdel Salam, O.E., Reiad, N.A., ElShafei, M.M. 2011. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. Journal of Advanced Research, 2(4), 297–303. https://doi.org/10.1016/j.jare.2011.01.008
  • 2. Desvita, H., Faisal, M., Mahidin, M., Suhendrayatna, S. 2021. Preliminary study on the antibacterial activity of liquid smoke from cacao pod shells (Theobroma cacao L). IOP Conference Series: Materials Science and Engineering, 1098(2), 022004. https://doi.org/10.1088/1757-899x/1098/2/022004
  • 3. Duwiejuah, A.B., Quainoo, A.K., Abubakari, A.-H. 2022. Simultaneous adsorption of toxic metals in binary systems using peanut and sheanut shells biochars. Heliyon, 8(9), e10558.
  • 4. Goel, J., Kadirvelu, K., Rajagopal, C. 2004. Competitive sorption of Cu (II), Pb (II) and Hg (II) ions from aqueous solution using coconut shell-based activated carbon. Adsorption Science & Technology, 22(3), 257–273.
  • 5. González, P.G., Pliego-Cuervo, Y.B. 2014. Adsorption of Cd (II), Hg (II) and Zn (II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata. Chemical Engineering Research and Design, 92(11), 2715–2724.
  • 6. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S. 2012. Chemical treatment technologies for waste-water recycling - An overview. RSC Advances, 2(16), 6380–6388. https://doi.org/10.1039/c2ra20340e
  • 7. Hassan, M., Liu, Y., Naidu, R., Parikh, S.J., Du, J., Qi, F., Willett, I.R. 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714.
  • 8. Inglezakis, V.J., Kudarova, A., Guney, A., Kinayat, N. 2023. Efficient mercury removal from water by using modified natural zeolites and comparison to commercial adsorbents. Sustainable Chemistry and Pharmacy, 32, 101017. https://doi.org/10.1016/j.scp.2023.101017
  • 9. Jabar, J.M., Adebayo, M.A., Owokotomo, I.A., Odusote, Y.A., Yılmaz, M. 2022. Synthesis of high surface area mesoporous ZnCl2–activated cocoa (Theobroma cacao L) leaves biochar derived via pyrolysis for crystal violet dye removal. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e10873
  • 10. Jia, L., Fan, B.G., Li, B., Yao, Y.X., Huo, R.P., Zhao, R., Qiao, X.L., Jin, Y. 2019. Effects of pyrolysis mode and particle size on the microscopic characteristics and mercury adsorption characteristics of Biomass Char. BioResources, 13(3), 5450–5471. https://doi.org/10.15376/biores.13.3.5450-5471
  • 11. Khalid, N., Ahmad, S., Kiani, S.N., Ahmed, J. 1999. Removal of mercury from aqueous solutions by adsorption to rice husks. Separation Science and Technology, 34(16), 3139–3153.
  • 12. Lelifajri, Rahmi, Ayu, A.S.W. 2021. Magnetic Sulfonated Chitosan composite beads for Mercury removal from Aqueous solutions. Journal of Physics: Conference Series, 1882(1). https://doi.org/10.1088/1742-6596/1882/1/012104
  • 13. Meena, A.K., Kadirvelu, K., Mishra, G.K., Rajagopal, C.N.P. 2008. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J Hazard Mater., 150(3). https://doi.org/doi: 10.1016/j.jhazmat.2007.05.030
  • 14. Mistar, E.M., Hasmita, I., Alfatah, T., Muslim, A., Supardan, M.D. 2019. Adsorption of mercury (II) using activated carbon produced from Bambusa vulgaris var. striata in a fixed-bed column. Sains Malaysiana, 48(4), 719–725.
  • 15. Mohideen, M.F., Faiz, M., Salleh, H., Zakaria, H., Raghavan, V.R. 2011. Drying of oil palm frond via swirling fluidization technique. Proceedings of the World Congress on Engineering 2011, WCE 2011, 3, 2375–2380.
  • 16. Muslim, A., Purnawan, E., Nasrullah, Meilina, H., Azwar, M. Y., Deri, N.O., Kadri, A. 2022. Adsorption of Copper Ions Onto Rice Husk Activated Carbon Prepared Using Ultrasound Assistance: Optimization Based on Step-By-Step Single Variable Knockout Technique. Journal of Engineering Science and Technology, 17(4), 2496–2511.
  • 17. Muslim, A., Zulfian, Ismayanda, M.H., Devrina, E., Fahmi, H. 2015. Adsorption of Cu(II) from the aqueous solution by chemical activated adsorbent of areca catechu shell. Journal of Engineering Science and Technology, 10(12), 1654–1666.
  • 18. Park, J.-H., Jim, J., Wang, B.Z., Mikhael, J.E.R., Ronald, D. 2018. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms, 1(225), 1–38.
  • 19. Rabie, A.M., Abd El-Salam, H.M., Betiha, M.A., El-Maghrabi, H.H., Aman, D. 2019. Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egyptian Journal of Petroleum, 28(3), 289–296. https://doi.org/10.1016/j.ejpe.2019.07.003
  • 20. Rocha, J.B.T., Aschner, M., Dórea, J.G., Ceccatelli, S., Farina, M., Silveira, L.C.L. 2012. Mercury toxicity. Journal of Biomedicine and Biotechnology, 2012, 2012–2014. https://doi.org/10.1155/2012/831890
  • 21. Salah Omer, A., A.El Naeem, G., Abd-Elhamid, A.I., O.M. Farahat, O., A. El-Bardan, A., M.A. Soliman, H., Nayl, A.A. 2022. Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: characterization, kinetic and isotherm studies. Journal of Materials Research and Technology, 19, 3241–3254. https://doi.org/10.1016/j.jmrt.2022.06.045
  • 22. Suhendrayatna, S., Abdurrahman, A., Elvitriana, E. 2019. Study on the optimization of mercury ion (II) adsorption with activated carbon from a biomass combination of palm bunches and rice husk. Aceh International Journal of Science and Technology, 8(3), 161–168.
  • 23. William Kajjumba, G., Emik, S., Öngen, A., Kurtulus Özcan, H., Aydın, S. 2019. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. Advanced Sorption Process Applications, November. https://doi.org/10.5772/intechopen.80495
  • 24. Yetri, Y., Hidayati, R., Padang, P.N. 2018. Politeknik Negeri Bengkalis Oktober. In Seminar Nasional Industri dan Teknologi (SNIT).
  • 25. Yusuff, A.S., Lala, M.A., Thompson-Yusuff, K.A., Babatunde, E.O. 2022. ZnCl2-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. South African Journal of Chemical Engineering, 42(May), 138–145. https://doi.org/10.1016/j.sajce.2022.08.002
  • 26. Zabihi, M., Ahmadpour, A., Asl, A.H. 2009. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. Journal of Hazardous Materials, 167(1–3), 230–236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-878e20d8-44fa-49c5-9611-fbd184f60a3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.