PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behavioral modeling of stressed MOSFET

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper piezoconductivity phenomenon in MOSFET channel is discussed and extension of drain current model with possibility of stress consideration is proposed. Analysis of obtained model combined with examination of stress components inherent in the MOSFET channel as well as distributions of specific piezoconductance coefficients on a plane of channel can show which directions of transistor channel are desirable for improvement of MOSFET performances. This model gives possibility to predict optimal transistor channel orientation, for the given stress state in MOSFET channel. Possible simplification of this model is considered. In particular, stress state and significant piezoconductance coefficient distributions on planes f100g, f110g as well as f111g are analyzed. For assumed particular cases of stress state in the channel, final models of MOSFT for considered specific planes are given.
Rocznik
Tom
Strony
103--126
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • Warsaw School of Computer Science
Bibliografia
  • [1] C. S. Smith. Macroscopic Symmetry and Properties of Crystals. Solid State Physics. Academic Press Inc., New York and London, 1958.
  • [2] J. F. Nye. Physical properties of crystals. Clarendon Press, Oxford, 1957.
  • [3] A. S. Nowick. Crystal Properties via Group Theory. Cambridge University Press, 1995.
  • [4] M. Kasper. [online]. http://web.archive.org/web/20070613134506/www.tuharburg.de/mst/deutsch/lehre/mikrosystemtechnik/pdf/kap13 eng.pdf [accessed: August 2, 2015].
  • [5] Y. Kanda. A graphical representation of the piezoresistance coefficients in silicon. IEEE
  • [6] Z. Gniazdowski. Krzemowe piezorezystywne czujniki wielko´sci mechanicznych. Teoretyczne i praktyczne aspekty modelowania i konstrukcji. Institute of Electron Technology, Warsaw, 2005.
  • [7] C. S. Smith. Piezoresistance effect in germanium and silicon. Physical Review, 94(1):42–49, Apr. 1954.
  • [8] C. Canali, G. Ferla, B. Morten, and A. Taroni. Piezoresistivity effects in MOS-FET useful for pressure transducers. J. Phys. D: Appl. Phys., 12, 1979.
  • [9] D. Colman, R. T. Bate, and J. P. Mize. Mobility anisotropy and piezoresistance in silicon p-type inversion layers. Journal of Applied Physics, 39(4):1923–1931, 1968.
  • [10] H. Mikoshiba. Stress-sensitive properties of silicon-gate MOS devices. Solid-State Electronics, 24:221–232, 1981.
  • [11] C. T. Sah. A history of MOS transistor compact modeling. In NSTI-Nanotech. NSTINanotech, 2005.
  • [12] C. K. Maiti, S. Chattopadhyay, and L. K. Bera. Strained-Si Heterostructure Field Effect Devices. Taylor & Francis, 2007.
  • [13] D. Foty. Perspectives on analytical modeling of small geometry MOSFETs in spice for low voltage/low power CMOS circuit design. Analog Integrated Circuits and Signal Processing, (21):229–252, 1999.
  • [14] Z. Gniazdowski. Exact extraction of piezoresistance coefficient using flat membrane. IEEE Sensors Journal, 6(1):160–165, 2006.
  • [15] [online]. minimos 6.1 win: http://www.iue.tuwien.ac.at/index.php?id=minimos-61-win [accessed: August 2, 2015].
  • [16] F. M. Bufler, A. Erlebach, and M. Oulmane. Symmetry reduction by surface scattering and mobility model for stressed < 100 > =(001) MOSFETs. In International Conference on Simulation of Semiconductor Processes and Devices. SISPAD, 2010.
  • [17] T. Gutt. Silicon carbide and its interface with SiO2. Seminar, Institute of Electron Technology, Warsaw, January 29, 2009.
  • [18] K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda. Nonlinear piezoresistance effects in silicon. J. Appl. Phys., pages 1838–1847, Feb. 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-878b937f-f66f-453d-973b-95e2aae8422e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.