PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric Sensitivity Analysis of Factors Affecting Sound Transmission Loss of Multi-Layered Building Elements Using Taguchi Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents application of Taguchi method in optimizing the sound transmission loss through sandwich gypsum constructions and those comprising of masonry concrete blocks and gypsum boards in order to investigate the relative influence of the various parameters affecting the sound transmission loss. The application of Taguchi method for optimizing sound transmission loss has been rarely reported. The present work uses the results analytically predicted on “Insul” software for various sandwich material configurations as desired by each experimental run in an L8 orthogonal array. The relative importance of the parameters on single-number rating, Rw (C, Ctr) is evaluated in terms of percentage contribu- tion using Analysis of Variance (ANOVA). The ANOVA method reveals that type of studs, steel stud frame and number of gypsum layers attached are the key factors controlling the sound transmission loss characteristics of sandwich multi-layered constructions.
Rocznik
Strony
165--176
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Apex Level Standards and Industrial Metrology Division CSIR – National Physical Laboratory New Delhi-110 012, India
  • Department of Mechanical and Production Engineering, Delhi Technological University Delhi-110 042, India
autor
  • Apex Level Standards and Industrial Metrology Division CSIR – National Physical Laboratory New Delhi-110 012, India
autor
  • Department of Mechanical and Production Engineering, Delhi Technological University Delhi-110 042, India
Bibliografia
  • 1. AMUNDSEN A.H., KLǼBOE R., AASVANG G.M. (2011), The Norwegian facade insulation study: the efficacy of facade sound insulation in reducing noise annoyance due to road traffic, J. of Acoustical Society of America, 129, 3, 1381-1389.
  • 2. ANTONIO J.M.P., TADEU A., GODINHO L. (2003), Analytical evaluation of the acoustic insulation provided by double infinite walls, J. of Sound and Vibration, 263, 113-129.
  • 3. BALLAGH K.O. (2004), Accuracy of prediction methods for sound transmission loss, Inter-noise, http://www.insul.co.nz/download/Paper586-BallaghNew.PDF.
  • 4. BESTERFIELD D.H., BESTERFIELD C.M., BESTERFIELD G.H., BESTERFIELD S.M. (1999), Total Quality management, Prentice Hall, Chapter 4.
  • 5. BRADLEY J.S., BlRTA J.A. (2000), Laboratory measurements of the sound insulation of building facade elements, IRC Internal Report, IRC IR-818.
  • 6. BRADLEY J.S., BIRTA J.A. (2001a), A simple model of the sound insulation of gypsum board on resilient supports, Noise Control Engg. J., 49, 216-223.
  • 7. BRADLEY J.S., BIRTA J.A. (2001b), On the sound insulation of wood stud exterior walls, J. of Acoustical Society of America, 110, 3086-3096.
  • 8. BRADLEY J.S., COVER B.N. (2011), Selecting walls for speech privacy, IRC report RR-314.
  • 9. BRAGANCA L., PATRICIO J. (2004), Case study: Comparison between the acoustic performance of a mixed building technology building and a conventional building, Building Acoustics, 11, 1, 79-90.
  • 10. GARG N., KUMAR A., MAJI S. (2013), Practical concerns associated with single number ratings in measuring sound transmission loss properties of partition panels, Archives of Acoustics, 38, 1, 115-124.
  • 11. GUILLEN I., URIS A., ESTELLA H., LLINARES J., LLOPSIS A. (2008), On the sound insulation of masonry wall facades, Building and Environment, 43, 523-529.
  • 12. HALLIWELL R.E., NIGHTINGALE T.R.T., WARNOCK A.C.C., BlRTA J.A. (1998), Gypsum board walls: Transmission loss data, NRC Report No. IRC-IR-761.
  • 13. Insul Software Manual, http: / / www.insul.co.nz / download/Insulv6Manual.pdf.
  • 14. KURRA S. (2012), Comparison of the models predicting sound insulation values of multi-layered building elements, Applied Acoustics, 73, 575-589.
  • 15. LOVERDE J., DONG W. (2009), Quantitative comparison of resilient channel design and installation methods, Internoise, http://www.pac-intl.com/pdf/ IN09_737_Submitted.pdf.
  • 16. NALBANT М., GOKKAYA H., SUR G. (2007), Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials and Design, 28, 1379-1385.
  • 17. PATTERSON M.J. (2004), Recent changes to the sound insulation provisions of the Building code of Australia, Proc. of Acoustics, 3rd to 5th November, Gold Coast, Australia.
  • 18. QUIRT J.D. (1985), Sound transmission through building components, Canadian Building Science Insight.
  • 19. RASMUSSEN B., RINDEL J.H. (2010), Sound insulation between dwellings - Descriptors applied, in building regulations in Europe, Applied Acoustics, 71, 3, 171-180.
  • 20. RASMUSSEN B. (2010), Sound insulation between dwellings - Requirements in building regulations in Europe, Applied Acoustics, 71, 4, 373-385.
  • 21. ROSS P.J. (1995), Taguchi techniques for quality engineering, Me Graw Hill, New York.
  • 22. SCHOLL W., LANG J., WITTSTOCK V. (2011), Rating of Sound Insulation at Present and in Future. The Revision of ISO 717, Acta Acustica united with Acustica, 97, 686-698.
  • 23. URIS A., LLOPIS A., LLINARES J. (1999), Effect of the rockwool bulk density on the airborne sound insulationof lightweight double walls, Applied Acoustics, 58, 327- 331.
  • 24. WARNOCK A.C.C. (1985), Factors affecting sound transmission loss, Canadian Building Science Insight, CBD 239.
  • 25. WARNOCK A.C.C. (1990), Sound transmission loss measurement through 190 mm and 140 mm blocks with added dry wall and through cavity block walls, NRC Canada, Internal Report No. 586.
  • 26. WARNOCK A.C.C. (1993), Sound transmission through slotted concrete blocks with attached gypsum board, J. ol Acoustical Society ol America, 94, 2713-2720.
  • 27. WARNOCK A.C.C. (1998), Controlling sound transmission through concrete block walls, Construction Technology Update No. 13.
  • 28. WARNOCK A.C.C., Quirt J.D. (1997), Control of sound transmission through gypsum board walls, Construction Technology Update No. 1.
  • 29. WARNOCK A.C.C., Quirt J.D., Sound transmission through Gypsum board walls, NRCC-39272.
  • 30. YANG W.H., TARNG Y.S. (1998), Design optimization of cutting parameters for turning operation based on the Taguchi method, J. ol Materials Processing Technology, 84, 122-129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-878ab062-1ee0-4d76-af0d-411547dc9a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.