PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review on Processes for Olive Mill Waste Water Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The olive mill waste water (OMWW) are effluents issued from the extraction of olive oil, these effluents are cloudy-looking liquids with a reddish-brown color, their pH varies from 4 to 5. They are very rich in polyphenols, which causes many environmental problems, such as water pollution, Currently, on an industrial scale, there is no reliable, efficient, and less expensive technique for OMWW treatment. OMWW are evaporated in watertight basins or discharged into watercourses. Several techniques have been studied to treat these industrial effluents. The objective of this work was to compare these studies to formulate the recommendations that can be adopted for an effective and cheaper treatment of these effluents which constitute a major environmental problem for water resources. Indeed, it can be concluded that it is very difficult to treat OMWW by conventional methods due to its non-biodegradability and high cost of others methods like distillation and oxidation. In the end, it was concluded that for a better OMWW treatment, it is necessary to start firstly by the adsorption of phenolic compounds which are responsible for the nonbiodegradability of OMWW while using cheaper adsorbents namely clays, bio-adsorbents or apatites, then dilute the OMWW with domestic wastewater. The dilution of OMWW by urban wastewater leads to good mineralization of organic matter by enriching the medium with microorganisms, which facilitates the elimination of the organic load and then we use the usual techniques as a plant filter or active sludge for mixture treatment.
Twórcy
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
autor
  • Laboratory of Organic Chemistry and Physical Chemistry (Molecular Modeling and Environment), Faculty of Sciences, University Ibn Zohr, B.P. 8106 Cité Dakhla, Agadir, Morocco
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
  • Laboratory of Chemical Processes and Applied Materials (LPCMA), Polydisciplinary Faculty of Béni-Mellal University Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Marocco
  • Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
Bibliografia
  • 1. Abu Al-Rub F.A., El-Naas M.H., Benyahia F., Ashour I. 2004. Biosorption of nickel on blank alginate beads, free and immobilized algal cells. J Process Biochem, 39(11), 1767–1773. https://doi.org/10.1016/j.procbio.2003.08.002
  • 2. Achak M., Ouazzani N., Yaacoubi A., Mandi L. 2008. Modern olive mill effluent characterization and their treatment by coagulation-floculation using lime and aluminium sulphate. J Water Sci, 21(1), 53–67. http://id.erudit.org/iderudit/017930ar
  • 3. Achak M., Ouazzani N., Mandi L. 2009a. Treatment of modern olive mill effluent by infiltration-percolation on a sand filter. J Water Sci Technol, 22, 421–433. https://doi.org/10.7202/037780ar
  • 4. Achak M., Hafidi A., Ouazzani N., Sayadi S., Mandi L. 2009b. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. J Hazard Mater, 166, 117–125. https://doi.org/10.1016/j.jhazmat.2008.11.036. PMid:19144464
  • 5. Achak M., Elayadi F., Boumya W. 2019. Chemical Coagulation/Flocculation Processes for Removal of Phenolic Compounds from Olive Mill Wastewater: A Comprehensive Review. Am J Appl Sci, 16(3), 59–91. https://doi.org/10.3844/ajassp.2019.59.91
  • 6. Ahmali A., Mandi L., Loutfi K. et al. 2020. Agrophysiological responses of Koroneiki olive trees (Olea europaea L.) irrigated by crude and treated mixture of olive mill and urban wastewaters. Scientia Horticulturae, 263, 109101. http://dx.doi.org/10.1016/j.scienta.2019.109101
  • 7. Aksu Z., Egretli G., Kutsal T. 1998. A comparative study of copper (II) biosorption on Caalginate, agarose and immobilized C. vulgaris in a packed-bed column. J Process Biochem, 33(4), 393–400. https://doi.org/10.1016/S0032-9592(98)00002-8
  • 8. Ali I., Asim M., Khan T.A.J. 2012. Low-cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manage, 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028
  • 9. Ali I. 2018. Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. J Mol Liq, 271, 677–685. https://doi.org/10.1016/j.Molliq.2018.09.021
  • 10. Allouche A., Fki I., Sayadi S. 2004. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem, 52, 267–273. https://doi.org/10.1021/jf034944u
  • 11. Bahdod A., Asria S., Saoiabi A., Coradin T., Laghzizil A. 2009. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface properties. Water Res, 43, 313–318. https://doi.org/10.1016/j.watres.2008.10.023.
  • 12. Bailliez S., Nzihou A., Beche E., Flamant G. 2004. Removal of lead (Pb) by Hydroxyapatite sorbent. J. Process Saf. Environ. Prot, 82, 175–180. https://doi.org/10.1205/095758204322972816
  • 13. Belaid C., Khadraoui M., Mseddi S., Elleuch B., Fauvarque J.F. 2013. Electrochemical treatment of olive mill wastewater : Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. J Environ Sci, 25(1), 220–230. https://doi.org/10.1016/S1001-0742(12)60037-0
  • 14. Belaqziz M., El-Abbassi A., Lakhal E.K., Agrafioti E., Galanakis C.M. 2016. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J Environ Manage, 171, 158–165. https://doi.org/10.1016/j.jenvman.2016.02.006
  • 15. Benaddi R., El Harfi Kh., Aziz F., Berrekhis F., Ouazzani N. 2020. Removal of phenolic compounds from synthetic solution and oil mill waste water by adsorption onto nanoparticles synthesized from phosphate rock. J Surf Sci Technol, 36, 39–51. https://doi.org/10.18311/jsst/2020/22591
  • 16. Benaddi R., Aziz F., El Harfi K.H., Ouazzani N. 2021. Adsorption and desorption studies of phenolic compounds on hydroxyapatite-sodium alginate composite. Desalin Water Treat, 220, 297–308. https://doi.org/10.5004/dwt.2021.26979
  • 17. Benaddi R., Aziz F., El Harfi K.H., Ouazzani N. 2022a. Column Adsorption Studies of Phenolic Compounds on Nanoparticles Synthesized from Moroccan Phosphate Rock. In: Sustainable Energy Water-Environment Nexus in Deserts, 115–120. https://doi.org/10.1007/978-3-030-76081-6_13
  • 18. Benaddi R., Bouriqi A., Aziz F., El harfi Kh., Ouazzani N. 2022b. Treatment of Olive Mill Waste Water by Adsorption on Hydroxyapatite-Sodium Alginate Composite. Int J Environ Sci Dev, 13(6), 251–256. http://dx.doi.org/10.18178/ijesd.2022.13.6.1401
  • 19. Ben Othman F., Fadhel A., Balghouthi M. 2022. Sustainable olive-oil mill wastewater treatment by distillation using a parabolic trough solar collector, J. Water Process. Eng., 48, 102947. https://doi.org/10.1016/j.jwpe.2022.102947
  • 20. Ben Sassi A., Ouazzani N., Walker G.M., Ibnsouda S., El Mzibri M., Boussaid A. 2008. Detoxification of olive mill wastewaters by Moroccan yeast isolates. Biodegradation, 19, 337–346. https://doi.org/10.1007/s10532-007-9140-8
  • 21. Boukhoubza F., Ait Boughrous A., Yacoubi-Khebiza M., Jail A., Hassani L., Idrissi L., Nejmeddine A. 2007. Impact of olive oil wastewater on the physicochemical and biological quality of groundwater in the Haouz plain, south of Marrakesh, Morocco. Environ Technol, 28(11), 1299–1315. https://doi.org/10.1080/09593330802131669
  • 22. Bouyarmane H., Asri S., Rami A., Roux C., Mahly M.A., Saoiabi A., Coradin T., Laghzizil A.J. 2010. Pyridine and phenol removal using natural and synthetic apatites as low-cost sorbents: Influence of porosity and surface interactions. J Hazard Mater, 181, 736–741. https://doi.org/10.1016/j.jhazmat.2010.05.074
  • 23. Bouyarmane H., Saoiabi S., Laghzizil A., Saoiabi A., Rami A., Karbane M. 2014. Natural phosphate and its derivative porous hydroxyapatite for the removal of toxic organic chemicals. Desalin Water Treat, 52, 7265–7269. https://doi.org/10.1080/19443994.2013.831797
  • 24. Celalettin O., Hayrunnisa T., Serkan S., Erkan K. 2010. Pretreatment of Olive Oil Mill Wastewater by Two Different Applications of Fenton Oxidation Processes. J Clean soil air water, 38, 1152–1158. https://doi.org/10.1002/clen.201090012
  • 25. Chaari I., Touil A., Medhioub M. 2020. Adsorption-desorption of phenolic compounds from Olive mills wastewater using Tunisian natural clay. Chin J Chem Eng, 40(12), 287–292. https://doi.org/10.1016/j.cjche.2020.12.020
  • 26. Comegna A., Dragonetti G., Kodesova R. et al. 2022. Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. Int. J. Environ. Sci. Technol., 19, 7079–7092. https://doi.org/10.1007/s13762-021-03630-6
  • 27. Davies L.C., Vilhena A.M., Novais J.M., Martins-Dias S. 2004. Olive mill wastewater characteristics: Modelling and statistical analysis. Grasas Aceites, 55, 233–241. http://dx.doi.org/10.3989/gya.2004.v55.i3.171
  • 28. De Almeida MS. Martins RC. Quinta-Ferreira RM et al. 2018. Optimization of operating conditions for the valorization of olive mill wastewater using membrane processes. Environ Sci Pollut Res, 25, 21968–21981. https://doi.org/10.1007/s11356-018-2323-5.
  • 29. Duarte K.R., Freitas A.C., Pereira R. Pinheiro JC. Gonçalves F. Azaari H. El Azzouzi M. Zrineh A. Zaydoun S. Duarte AC. Rocha-Santos TAP. 2012. Treatment of Olive Oil Mill Wastewater by Silica–Alginate–Fungi Biocomposites. J Water Air Soil Pollut, 223, 4307–4318. https://doi.org/10.1007/s11270-012-1193-6
  • 30. El Ghadraoui A., Ouazzani N., Ahmali A., El Hakim E.T. Aziz F., Hejjaj A., Del Bubba M., Mandi L. 2020. Treatment of olive mill and municipal wastewater mixture by pilot scale 2 vertical flow constructed wetland. J Desalin Water Treat, 198, 126–139. https://doi.org/10.5004/dwt.2020.26009.
  • 31. El Hajjouji H., El Fels L., Pinelli E. et al 2014. Evaluation of an aerobic treatment for olive mill wastewater detoxification. Environ.Technol, 35(24), 3052–3059. https://doi.org/10.1080/09593330.2014.930514
  • 32. Escudero C., Fiol N., Villaescusa I., Bollinger J.C. 2017. Effect of chromium speciation on its sorption mechanism onto grape stalks entrapped into alginate beads. Arab. J. Chem, 10, S1293–S1302. https://doi.org/10.1016/j.arabjc.2013.03.011
  • 33. Galiatsatou P., Metaxas M., Arapoglou D., Kasselouri-Rigopoulou V. 2002. Treatment of olive mill waste water with activated carbons from agricultural by-products. J. Waste Manag, 22(7), 803–812. https://doi.org/10.1016/s0956-053x(02)00055-7
  • 34. Gholamzadeh N., Peyravi M., Jahanshahi M. 2016. Study on Olive Oil Wastewater Treatment: Nanotechnology Impact. J. Water Environ. Nanotechnol., 1(2), 145–161. https://dx.doi.org/10.7508/jwent.2016.02.008
  • 35. Girish C.R., Ramachandra V. 2012. Adsorption of phenol from wastewater using locally available adsorbents. J environ res dev, 6, 763–772. https://www.researchgate.net/publication/332670013
  • 36. Giusy S., Lofrano G., Grassi M., Notarnicola M. 2016. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. J Sustain Mater Technol, 9, 10–140. https://doi.org/10.1016/j.susmat.2016.06.002
  • 37. Gupta V.K., Ali I. 2012. Environmental Water Advances in Treatment, Remediation and Recycling 1st Edition.
  • 38. Hamdi A. 1996. Anaerobic digestion of olive mill wastewaters, Process Biochem, 31(2), 105–110. https://doi.org/10.1016/0032-9592(95)00035-6
  • 39. Hanafi F., Sadif N., Assobhei O., Mountadar M. 2009. Traitement des margines par électrocoagulation avec des électrodes plates en aluminium. J Water Sci, 22(4), 473–485. https://doi.org/10.7202/038326ar
  • 40. Haydari I. Lissaneddine A. Aziz K. et al. 2022. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater. Environ Sci Pollut Res, 29, 80044–80061. https://doi.org/10.1007/s11356-022-20577-4
  • 41. Jaouad Y., Villain M., Ouazzani N., Mandi L., Marrot B. 2016. Biodegradation of olive mill wastewater in a membrane bioreactor: acclimation of the biomass and constraints. J Desalin Water Treat, 57(18), 8109–8118. https://doi.org/10.1080/19443994.2015.1025435
  • 42.Jarboui R., Sellami F., Kharroubi A., Gharsallah N., Ammar E. 2008. Olive mill wastewater stabilization in open-air ponds: Impact on clay–sandy soil. Bioresour Technol, 99, 7699–7708. https://doi.org/10.1016/j.biortech.2008.01.074
  • 43. Jeddi M., Ouassini A., El Ouahhaby M., Mghafri H. 2016. Valorisation of Natural Mineral Substances (NMS) at Adsorption Techniques: Case of Olive Oil Mill Waste waters. J Mater Environ Sci, 7(2), 488–496.
  • 44. Jia Q., Lua A.C. 2008. Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption. J Anal Appl Pyrolysis, 83(2), 175–179. https://doi.org/10.1016/j.jaap.2008.08.001
  • 45. Kallel M., Belaid C., Boussahel R., Ksibi M., Montiel A., Elleuch B. 2009. Olive mill wastewater degradation by Fenton oxidation with zerovalent iron and hydrogen peroxide. J Hazard Mater, 163(2–3), 550–554. https://doi.org/10.1016/j.jhazmat.2008.07.006
  • 46. Lidija J. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. J Food Chem, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
  • 47. Martins R.C., Ferreira A.M., Gando-Ferreira L.M. et al. 2015. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes. Environ Sci Pollut Res, 22, 15587–15597. https://doi.org/10.1007/s11356-015-4766-2
  • 48. Martins D., Martins R.C., Braga M.E.M. 2021. Bio compounds recovery from olive mill wastewater by liquid-liquid extraction and integration with Fenton’s process for water reuse. Environ Sci Pollut Res, 28, 29521–29534. https://doi.org/10.1007/s11356-021-12679-2
  • 49. Nassar N.N., Arar A.L., Marei N.N., Abu Ghanim M.M., Dwekat S.M., Sawalha H.S. 2014. Treatment of olive mill-based wastewater by means of magnet-icnanoparticles: Decolourization, dephenolization and COD removal. J Environ. Nanotechnol. Monit. Manag, (1–2), 14–23. https://doi.org/10.1016/j.enmm.2014.09.001
  • 50. Neffa M., Hanine H., Lekhlif B., Ouazzani N., Taourirte M. 2014. Improvement of biological process using biocoagulation-flocculation pretreatment aid in olive mill wastewater detoxification. J Desalin Water Treat, 52(13–15), 2893–2902. http://dx.doi.org/10.1080/19443994.2013.813692
  • 51. Olivier C., Marie D., Catherine P. 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination, 249, 865–869. https://doi.org/10.1016/j.desal.2009.04.014
  • 52. Oumani A., Mandi L., Berrekhis F., Ouazzani N. 2019. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. J Hazard Mater, 378, 120718. https://doi.org/10.1016/j.jhazmat.2019.05.111
  • 53. Papaoikonomou L., Labanaris K., Kaderides K. et al. 2021. Adsorption–desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent. Environ Sci Pollut Res, 28, 24230–24244. https://doi.org/10.1007/s11356-019-07277-2
  • 54. Rocher V., Siaugue J.M., Cabuil V., Bee A. 2008. Removal of organic dyes by magnetic alginate beads. Journal of Water Research, 42(4–5), 1290–1298. https://doi.org/10.1016/j.watres.2007.09.024
  • 55. Sami S., Radhouane S. 1995. Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters. Appl Environ Microbiol, 61(3), 1098–1103. https://doi.org/10.1128/AEM.61.3.1098-1103
  • 56. Saoiabi S., Gouza A., Bouyarmane H., Laghzizil A., Saoiabi A. 2016. Organophosphonate-modified Hydroxyapatites for Zn (II) And Pb (II) Adsorption in relation of their structure and surface properties. J Environ Chem Eng, 4(1), 428–433. https://doi.org/10.1016/j.jece.2015.11.036
  • 57. Sayadi S., Ellouz R. 1993. Screening of white rot fungi for the treatment of olive mill wate-waters. J Chem Technol Biotech, 57, 141–147. https://doi.org/10.1002/jctb.280570208
  • 58. Sayadi S., Ellouz R. 1995. Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl Environ Microbiol, 61, 1098–1103. https://doi.org/10.1128%2Faem.61.3.1098-1103.1995
  • 59. Sayadi S., Allouche N., Jaoua M., Aloui F. 2000. Detrimental effects of high molecular-mass polyphenols on olive mill wastewater. biotreatment. Process Biochem, 35, 725–735. https://doi.org/10.1016/S0032-9592(99)00134-X
  • 60. Sellaoui L., Kehili M., Claudio Lima E., Thue P.S., Bonilla-Petriciolet A., Ben Lamine A., Dotto G.L., Erto A. 2019. Adsorption of phenol on microwaveassisted activated carbons: Modelling and interpretation, J Mol Liq, 274, 309–314. https://doi.org/10.1016/j.molliq.2018.10.098
  • 61. Solomakou N., Goula A.M. 2021. Treatment of olive mill wastewater by adsorption of phenolic compounds. Rev. Environ. Sci. Biotechnol, 20(1–3), 1–25, 839–863. https://doi.org/10.1007/s11157-021-09585-x(0123456789().,-volV()0
  • 62. Sunil J.K., Ravi W.T., Suhas V.P., Mukesh BS. 2013. Adsorption of Phenol from Wastewater in Fluidized Bed Using Coconut Shell Activated Carbon. J Procedia Eng, 51, 300–307. https://doi.org/10.1016/j.proeng.2013.01.040
  • 63. Torrecilla J.S. 2010. Phenolic Compounds in Olive Oil Mill Wastewater chapter 40. In: Olives and Olive Oil in Health and Disease Prevention, 357–365. http://dx.doi.org/10.1016/B978-0-12-374420-3.00040-1
  • 64. Tsioulpas A., Dimou D., Iconomou D., Aggelis G. 2002. Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol, 84, 251–257. https://doi.org/10.1016/S0960-8524(02)00043-3
  • 65. Uğurlu M., Kula İ. 2007. Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment. Env Sci Poll Res Int, 14, 319–325. https://doi.org/10.1065/espr2006.06.315
  • 66. Vavouraki A. 2020. Removal of Polyphenols from Olive Mill Wastewater by FPX 66 Resin: Part II. Adsorption Kinetics and Equilibrium Studies. Int J Waste Resour, 10(1), 1–7. https://doi.org/10.35248/2252-5211.20.10.373
  • 67. Víctor-Ortega M.D., Ochando-Pulido J.M., Martínez-Ferez A. 2016. Ion exchange system for the final purification of olive mill wastewater: Performance of model vs. real effluent treatment. Process Saf Environ Prot, 103(Part B), 308–314. https://doi.org/10.1016/j.seppur.2016.01.023
  • 68. Waseem R., Jechan L., Nadeem R., Yiwei L., Ki-Hyun K., Jianhua Y. 2019. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J Ind Eng Chem., 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8785301c-982f-4f78-b26e-26c9c1477cd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.