PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling of Chamfer Billet of High Carbon Steel During Continuous Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The formation of internal cracks in as-cast billet is mainly attributed to the stress and strain states near the solidifying front. This study investigates the effect of chamfer configuration of as-cast billet on the maximal principal stress and the tensile stress during soft reduction process. The LIT and ZDT of GCr15 bearing steel are calculated by the solidification phase transformation model. What’s more, the 3D finite element models is established to investigate stress and strain states in the brittle temperature range. The relationships between chamfer angle and maximal principal stress, internal crack, as well as equivalent plastic strain are analyzed. Numerical results reveal that a chamfer configuration of as-cast billet is much more effective than a rectangular one on decreasing the risk of internal cracks.
Słowa kluczowe
Twórcy
autor
  • R&D Institute of Bengang Steel Plates Co., Ltd., Benxi 117000, China
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
autor
  • Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
autor
  • Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Beijing 100084, China
Bibliografia
  • [1] H.K.D.H. Bhadeshia, Steels for bearings, Progress in Materials Science 57, 268-435 (2012).
  • [2] S. Luo, M.Y. Zhu, C. Ji, Theoretical model for determining optimum soft reduction zone of continuous casting steel, Ironmaking and Steelmaking 41, 233-240 (2014).
  • [3] J. Zhao, L. Liu, W. Wang, H. Lu, Effects of heavy reduction technology on internal quality of continuous casting bloom, Ironmaking and Steelmaking 46, 227-234 (2017).
  • [4] K.H. Kim, T. Yeo, K.H. Oh, D.N. Lee, Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks, ISIJ International 36, 284-290 (1996).
  • [5] A. Cwudziński, Numerical and physical simulation of liquid steel behaviour in one strand tundish with subflux turbulence controller, Archives of Metallurgy and Materials 60, 3, 1581-1586 (2015).
  • [6] A. Cwudziński, Numerical and physical modeling of liquid steel behaviour in one strand tundish with gas permeable barrier, Archives of Metallurgy and Materials 63, 2, 589-596 (2018).
  • [7] T. Merder, Numerical analysis of the structure of liquid flow in the tundish with physical model verifocation, Archives of Metallurgy and Materials 63, 4, 1895-1901 (2018).
  • [8] T. Merder, Modelling the influence of changing constructive parameters of multi-strand tundish on steel flow and heat transfer, Ironmaking and Steelmaking 40, 10, 1743-2812 (2016).
  • [9] T. Merder, Influence of design parameters of tundish and technological parameters of steel continuous casting on the hydrodynamics of the liquid steel flow, Metalurgija 53, 4, 443-446 (2014).
  • [10] X.B. Li, H. Ding, Z.Y. Tang, Formation of internal cracks during soft reduction in rectangular bloom continuous casting, International Journal of Minerals, Metallurgy and Materials 19, 1, 21-29 (2012).
  • [11] N. Zong, H. Zhang, Y. Liu, Z. Lu, Analysis on morphology and stress concentration in continuous casting bloom to learn the formation and propagation of internal cracks induced by soft reduction technology, Ironmaking and Steelmaking 46, 9, 872-885 (2019).
  • [12] N. Zong, Y. Liu, H. Zhang, X. Yang, Application of a chamfered slab technology to reduce straight edge seam defects of nonoriented silicon electrical steel generated during flexible thin slab casting process, Metallurgical Research & Technology 114, 311-319 (2017).
  • [13] N. Zong, Y. Liu, H. Zhang, Application of chamfered narrow face mold technology to reduce longitudinal surface crack defects of hyperperitectic steel generated during flexible thin slab casting process, Metallurgical Research & Technology 114, 413-421(2017).
  • [14] T.W. Clyne, M. Wolf, W. Kurz, The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting, Metallurgical and Materials Transactions B 13, 259-266 (1982).
  • [15] Y. Ueshima, S. Mizoguchi, T. Matsumiya, Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification, Metallurgical and materials transactions B 17, 845-859 (1986).
  • [16] K. Kim, H.N. Han, Y. Lee, Proc. Conf. Melt cpinning, ctrip casting and slab casting, TMS, Warrendale, PA, Anaheim, 87, (1996).
  • [17] N. Zong, H. Zhang, Y. Liu, Z. Lu, Analysis of the off-corner subsurface cracks of continuous casting blooms under the influence of soft reduction and controllable approaches by a chamfer technology, Metallurgical Research & Technology 116, 310-322 (2019).
  • [18] N. Zong, Y. Liu, S. Ma, W. Sun, T. Jing, H. Zhang, A review of chamfer technology in continuous casting process, Metallurgical Research & Technology 117, 204-219 (2020).
  • [19] Y. Fei, H. Lin, M. Huajie, H. Xinghui, Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments, Materials & Design 43, 393-401 (2013).
  • [20] Y. Hou, T. He, S. Chen, H. Ji, R. Wu, Microstructure evolution and unified constitutive equations for the elevated temperature deformation of SAE 52100 bearing steel, Journal of Manufacturing Processes 44, 113-124 (2019).
  • [21] P.F. Kozlowski, B.G. Thomas, J.A. Azzi, H. Wang, Simple constitutive equations for steel at high temperature, Metallurgical and materials transactions A 23, 903-918(1992).
  • [22] Y.M. Won, B.G. Thomas, Simple model of microsegregation during solidification of steels, Metallurgical and materials transactions A 32, 1755-1767(001).
  • [23] A. Yamanaka, K. Nakajima, K. Okamura, Critical strain for internal crack formation in continuous casting, Ironmaking and Steelmaking 22, 508-512 (1995).
  • [24] Hiebler, J. Zirngast, C. Bernhard, M.M. Wolf, Inner crack formation in continuous casting: stress or strain criterion? In: Steelmaking Conf. Proc. 77, 405-416 (1994).
Uwagi
1. The present work is financially supported by The National Key Research and Development Program of China No. 2017YFB1103700
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8784d150-4aab-471b-a841-4a0cff6b4544
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.