PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of pneumonia using convolutional neural networks and deep learning

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective and automated detection of pneumonia represents a serious challenge in medical imaging, because the signs of the illness are not obvious in CT or X-ray scans. Further on, it is also an important task, since millions of people die of pneumonia every year. The main goal of this paper is to propose a solution for the above mentioned problem, using a novel deep neural network architecture. The proposed novelty consists in the use of dropout in the convolutional part of the network. The proposed method was trained and tested on a set of 5856 labeled images available at one of Kaggle’s many medical imaging challenges. The chest X-ray images (anterior-posterior) were selected from retrospective cohorts of pediatric patients, aged between one and five years, from Guangzhou Women and Children’s Medical Center, Guangzhou, China. Results achieved by our network would have placed first in the Kaggle competition with the following metrics: 97.2% accuracy, 97.3% recall, 97.4% precision and AUC ₌ 0:982, and they are competitive with current state-of-the-art solutions.
Twórcy
  • Corvinus University of Budapest, Budapest, Hungary
  • Computational Intelligence Research Group (CIRG), Sapientia University of Transylvania, Şoseaua Sighişoarei 1/C, 540485 Tîrgu Mureş, Romania
  • Physiological Controls Research Center, Óbuda University, Budapest, Hungary
  • Biomatics and Applied Artificial Intelligence Institution, Óbuda University, Budapest, Hungary
Bibliografia
  • [1] Li YY, Zhang ZY, Dai C, Dong Q, Badrigilan S. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis. Comput Biol Med 2020;123. https://doi.org/10.1016/j.compbiomed.2020.103898 103898.
  • [2] Jain R, Nagrath P, Kataria G, Kaushik VS, Hemanth DJ. Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning. Measurement 2020;165 . https://doi.org/10.1016/j.measurement.2020.108046 108046.
  • [3] Dey N, Zhang YD, Rajinikanth V, Pugalenthi R, Sri Madhava Raja N. Customized VGG19 Architecture for Pneumonia Detection in Chest X-Rays. Patt. Recogn Lett 2021;143(67–74). https://doi.org/10.1016/j.patrec.2020.12.010.
  • [4] Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19 Detection from X-rays. Comput Meth Prog Biomed 2020;196. https://doi.org/10.1016/j.cmpb.2020.105608 105608.
  • [5] Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Bhardwaj P, Singh V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos, Solitons & Fractals 2020;140. https://doi.org/10.1016/j.chaos.2020.110190 110190.
  • [6] Ibrahim DM, Elshennawy NM, Sarhan AM. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput Biol Med 2021;132. https://doi.org/10.1016/j.compbiomed.2021.104348 104348.
  • [7] Jin WQ, Dong SQ, Dong CZ, Ye XD. Hybrid ensemble model for differential diagnosis between COVID-19 and common viral pneumonia by chest X-ray radiograph. Comput Biol Med 2021;131. https://doi.org/10.1016/j.compbiomed.2021.104252104252.
  • [8] Karthik R, Menaka R, Hariharan M. Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN. Appl Soft Comput 2021;99. https://doi.org/10.1016/j.asoc.2020.106744 106744.
  • [9] Quan H, Xu XS, Zheng TT, Li Z, Zhao MF, Cui XY. DenseCapsNet: Detection of COVID-19 from X-ray images using a capsule neural network. Comput Biol Med 2021;133. https://doi.org/10.1016/j.compbiomed.2021.104399 104399.
  • [10] Alhudhaif A, Polat K, Karaman O. Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. Expert Syst Appl 2021;180. https://doi.org/10.1016/j.eswa.2021.115141 115141.
  • [11] Sirazitdinov I, Kholiavchenko M, Mustafaev T, Yixuan Y, Kuleev R, Ibragimov B. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput Electr Eng 2019;78:388–99. https://doi.org/10.1016/j.compeleceng.2019.08.004.
  • [12] Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJPC. Identifying pneumonia in chest X-rays: A deep learning approach. Measurement 2019;145:511–8. https://doi.org/10.1016/j.measurement.2019.05.076.
  • [13] Mahmud T, Rahman MA, Fattah SA. CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput Biol Med 2020;122. https://doi.org/10.1016/j.compbiomed.2020.103869 103869.
  • [14] Ouchicha C, Ammor O, Meknassi M. CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons & Fractals 2020;140. https://doi.org/10.1016/j.chaos.2020.110245 110245.
  • [15] Wang J, Bao YM,Wen YF, Lu HB, Luo H, Xiang YF, Li XM, Liu C, Qian DH. Prior-Attention Residual Learning for More Discriminative COVID-19 Screening in CT Images. IEEE Trans Med Imag 2020;39(8):2572–83. https://doi.org/10.1109/TMI.2020.2994908.
  • [16] Wang Z, Xiao Y, Li Y, Zhang J, Lu FG, Hou MZ, Liu CW. Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Patt Recogn 2021;110. https://doi.org/10.1016/j.patcog.2020.107613 107613.
  • [17] Wang SH, Zhang X, Zhang YD. Deep stacked sparse autoencoder analytical model for COVID-19 diagnosis by fractional Fourier entropy. ACM Trans. Manage. Inf Syst 2021;13(1):20. https://doi.org/10.1145/3451357.
  • [18] Wang SH, Khan MA, Govindaraj V, Fernandes SL, Zhu ZQ, Zhang YD. Deep rank-based average pooling network for Covid-19 recognition. Comput Mater Contin 2022;70(2):2797–813. https://doi.org/10.32604/cmc.2022.020140.
  • [19] Horry MJ, Chakraborty S, Paul M, Ulhaq A, Pradhan B, Saha M, Shukla N. COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data. IEEE Access 2020;8:149808–24. https://doi.org/10.1109/ACCESS.2020.3016780.
  • [20] Rajaraman S, Siegelman J, Alderson PO, Folio LS, Les R, Antani SK. Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays. IEEE Access 2020;8:115041–50. https://doi.org/10.1109/ACCESS.2020.3003810.
  • [21] Singh G, Yow KC. An Interpretable Deep Learning Model for Covid-19 Detection With Chest X-Ray Images. IEEE Access 2021;9:85198–208. https://doi.org/10.1109/ACCESS.2021.3087583.
  • [22] Anis S, Lai KW, Chuah JH, Ali SM, Mohafez H, Hadizadeh M, Yan D, Ong ZC. An Overview of Deep Learning Approaches in Chest Radiograph. IEEE Access 2020;8:182347–54. https://doi.org/10.1109/ACCESS.2020.3028390.
  • [23] Khan W, Zaki N, Ali L. Intelligent Pneumonia Identification From Chest X-Rays: A Systematic Literature Review. IEEE Access 2021;9:51747–71. https://doi.org/10.1109/ACCESS.2021.3069937.
  • [24] Dong D, Tang ZC, Wang S, Hui H, Gong LX, Lu Y, Xue Z, Liao HE, Chen F, Yang F, Jin RH, Wang K, Liu ZY, Wei JW, Mu W, Zhang H, Jiang JY, Tian J, Li HJ. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE Rev Biomed Eng 2021;14:16–29. https://doi.org/10.1109/RBME.2020.2990959.
  • [25] Kora P, Ooi CP, Faust O, Raghavendra U, Gudigar A, Chan WY, Meenakshi K, Swaraja K, Plawiak P, Rajendra Acharya U. Transfer learning techniques for medical image analysis: A review. Biocybern Biomed Eng 2022;42:79–107. https://doi.org/10.1016/j.bbe.2021.11.004.
  • [26] Lefkovits S, Lefkovits L, Szilágyi L. Applications of different CNN architectures for palm vein identification. In: Proc. Modeling Decisions for Artificial Intelligence (MDAI). Lect. Notes Comput. Sci. 2019; 11676:295–306. doi: 10.1007/978-3-030-26773-5_26.
  • [27] Wager S, Wang S, Liang P. Dropout training as adaptive regularization. In: 27th Annual Conference on Neural Information 2013; pp. 351–359. doi: 10.5555/2999611.2999651.
  • [28] Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv: 1412.6980, 2014. https://arxiv.org/abs/1412.6980.
  • [29] Albelwi S, Mahmood A. A Framework for Designing the Architectures of Deep Convolutional Neural Networks. Entropy 2017;19:242. https://doi.org/10.3390/e19060242.
  • [30] Thakkar V, Tewary S, Chakraborty C. Batch Normalization in Convolutional Neural Networks – A comparative study with CIFAR-10 data. In: 5th International Conference on Emerging Applications of Information Technology. p. 1–5. https://doi.org/10.1109/EAIT.2018.8470438.
  • [31] Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Emadi NA, Reaz MBI, Islam MT. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020;8:132665–76. https://doi.org/10.1109/ACCESS.2020.3010287.
  • [32] Ren H,Wong AB, Lian WM, Cheng WB, Zhang Y, He JW, Liu QF, Yang JS, Zhang CJ, Wu KS, Zhang HD. Interpretable Pneumonia Detection by Combining Deep Learning and Explainable Models With Multisource Data. IEEE Access 2021;9:95872–83. https://doi.org/10.1109/ACCESS.2021.3090215.
  • [33] Arias-Londoño JD, Gómez-García JA, Moro-Velázquez L, Godino-Llorente JI. Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach. IEEE Access 2020;8:226811–27. https://doi.org/10.1109/ACCESS.2020.3044858.
  • [34] Sakib S, Tazrin T, Fouda MM, Fadlullah ZM, Guizani M. DLCRC: Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A Novel Approach. IEEE Access 2020;8:171575–89. https://doi.org/10.1109/ACCESS.2020.3025010.
  • [35] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020;121. https://doi.org/10.1016/j.compbiomed.2020.103792 103792.
  • [36] Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Garn W. COVID-19 diagnosis from chest x-rays: developing a simple, fast, and accurate neural network. Health Inf Sci Syst 2021;9:36. https://doi.org/10.1007/s13755-021-00166-4.
  • [37] Das AK, Ghosh S, Thunder S, Dutta R, Sachin A, Chakrabati A. Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal Appl 2021;24:1111–24. https://doi.org/10.1007/s10044-021-00970-4.
  • [38] Munusamy H, Muthukumar KJ, Gnanaprakasam S, Shanmugakani TR, Sekar A. FractalCovNet architecture for COVID-19 chest X-ray image classification and CT-scan image segmentation. Biocybern Biomed Eng 2021;41:1025–38. https://doi.org/10.1016/j.bbe.2021.06.011.
  • [39] Joshi RC, Yadav S, Pathak VK, Malhotra HS, Khokar HVS, Parihar A, Kohli N, Himanshu D, Garg RK, Bhatt MLB, Kumar R, Singh NP, Sardana V, Burget R, Alippi C, Traviso-Gonzalez CM, Dutta MK. A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images. Biocybern Biomed Eng 2021;41:239–54. https://doi.org/10.1016/j.bbe.2021.01.002.
  • [40] Singh S, Tripathi BK. Pneumonia classification using quaternion deep learning. Multimed Tools Appl 2022;81(2):1743–64. https://doi.org/10.1007/s11042-021-11409-7.
  • [41] Dash AK, Mohapatra P. A fine-tuned deep convolutional neural network for chest radiography image classification on COVID-19 cases. Multimed. Tools Appl., available online 21 Sep 2021. doi: 10.1007/s11042-021-11388-9.
  • [42] Gour M, Jain S. Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern Biomed Eng 2022;42:27–41. https://doi.org/10.1016/j.bbe.2021.12.001.
  • [43] Kelly CJ, KarthikesalingamA, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195. https://doi.org/10.1186/s12916-019-1426-2.
  • [44] Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 2018;15. https://doi.org/10.1371/journal.pmed.1002683 e1002683.
  • [45] Csiszár O, Csiszár G, Dombi J. How to implement MCDM tools and continuous logic into neural computation?: Towards better interpretability of neural networks. Knowl Based Syst 2020;210. https://doi.org/10.1016/j.knosys.2020.106530106530.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-877ab96c-5c6c-4995-a9d8-7f2e1cc2be59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.